Питьевая сода формула химическая


Гидрокарбонат натрия — Википедия

Гидрокарбонат натрия

({{{картинка}}})
({{{изображение}}})
Систематическое
наименование
гидрокарбонат натрия
Традиционные названия пищевая (питьевая) сода, сода двууглекислая, двууглекислый натрий, бикарбонат натрия, кислый углекислый натрий
Хим. формула CHNaO3
Рац. формула NaHCO3
Состояние твёрдое
Молярная масса 84,0066 г/моль
Плотность 2,159 г/см³
Температура
 • разложения 60—200 °C
Растворимость
 • в воде 9,59 г/100 мл
Рег. номер CAS 144-55-8
PubChem 516892
Рег. номер EINECS 205-633-8
SMILES
InChI
Кодекс Алиментариус E500(ii)
RTECS VZ0950000
ChEBI 32139
ChemSpider 8609
ЛД50 4220 мг/кг
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Гидрокарбона́т на́трия (лат. Natrii hydrocarbonas), другие названия: бикарбона́т на́трия, ча́йная со́да, питьева́я или пищева́я со́да, двууглеки́слый на́трий — химическое неорганическое вещество, натриевая кислая соль угольной кислоты с химической формулой NaHCO3.

В обычном виде — мелкокристаллический порошок белого цвета.

Используется в промышленности, пищевой промышленности, в кулинарии, в медицине как нейтрализатор химических ожогов кожи и слизистых оболочек концентрированными кислотами и для снижения кислотности желудочного сока. Также применяется в буферных растворах.

Гидрокарбонат натрия — кислая натриевая соль угольной кислоты. Проявляет все свойства соли сильного основания и слабой кислоты. В водных растворах имеет слабощелочную реакцию. В широком диапазоне концентраций в водном растворе pH раствора изменяется незначительно, на этом основано применение раствора вещества в качестве буферного раствора.

Реакция с кислотами[править | править код]

Гидрокарбонат натрия реагирует с кислотами с образованием соответствующей кислоте соли, например, хлорида натрия, сульфата натрия и угольной кислоты, которая в процессе реакции распадается на углекислый газ и воду, при этом углекислый газ выделяется из раствора в виде пузырьков:

NaHCO3+HCl→NaCl+h3CO3,{\displaystyle {\mathsf {NaHCO_{3}+HCl\rightarrow NaCl+H_{2}CO_{3}}},}
h3CO3→h3O+CO2↑,{\displaystyle {\mathsf {H_{2}CO_{3}\rightarrow H_{2}O+CO_{2}\uparrow }},}
2NaHCO3+h3SO4→Na2SO4+2h3O+2CO2↑.{\displaystyle {\mathsf {2NaHCO_{3}+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2H_{2}O+2CO_{2}\uparrow }}.}

В быту обычно применяется реакция «гашения соды» уксусной кислотой, с образованием ацетата натрия или гашение лимонной кислотой с образование цитрата натрия, реакция с уксусной кислотой:

NaHCO3+Ch4COOH→Ch4COONa+h3O+CO2↑.{\displaystyle {\mathsf {NaHCO_{3}+CH_{3}COOH\rightarrow CH_{3}COONa+H_{2}O+CO_{2}\uparrow }}.}

При температуре выше 60 °C гидрокарбонат натрия начинает распадаться на карбонат натрия, углекислый газ и воду (процесс разложения наиболее эффективен при 200 °C:

2NaHCO3→60−200∘CNa2CO3+h3O+CO2↑.{\displaystyle {\mathsf {2NaHCO_{3}{\xrightarrow {60-200^{\circ }C}}Na_{2}CO_{3}+H_{2}O+CO_{2}\uparrow }}.}

При этом процессе выделения воды в виде водяного пара и углекислого газa масса исходного продукта уменьшается примерно на 37 %.

В промышленности гидрокарбонат натрия получают аммиачно-хлоридным способом[1]. В концентрированный раствор хлорида натрия, насыщенный аммиаком, под давлением пропускают углекислый газ. В процессе синтеза происходят две реакции:

Nh4+CO2+h3O→Nh5HCO3{\displaystyle {\mathsf {NH_{3}+CO_{2}+H_{2}O\rightarrow NH_{4}HCO_{3}}}}
Nh5HCO3+NaCl→NaHCO3↓+Nh5Cl.{\displaystyle {\mathsf {NH_{4}HCO_{3}+NaCl\rightarrow NaHCO_{3}\downarrow +NH_{4}Cl}}.}

В холодной воде гидрокарбонат натрия мало растворим, и его отделяют от охлаждённого раствора фильтрованием, а из полученного после фильтрования раствора хлорида аммония снова получают аммиак, возвращаемый в производство вновь:

2Nh5Cl+Ca(OH)2→2Nh4↑+CaCl2+2h3O.{\displaystyle {\mathsf {2NH_{4}Cl+Ca(OH)_{2}\rightarrow 2NH_{3}\uparrow +CaCl_{2}+2H_{2}O}}.}

Двууглекислый натрий (бикарбонат) применяется в химической, пищевой, лёгкой, медицинской, фармацевтической промышленности, цветной металлургии, в быту. Зарегистрирован в качестве пищевой добавки E500 (ii), входит в состав пищевой добавки E500.

В химической промышленности[править | править код]

Применяется для производства красителей, пенопластов и других органических продуктов, фторорганических соединений, продуктов бытовой химии, наполнителей в огнетушителях, Реагент для отделения диоксида углерода, сероводорода из газовых смесей, например, отходящих газов топливосжигающих установок. В этом процессе углекислый газ поглощается раствором гидрокарбоната натрия при повышенном давлении и пониженной температуре, далее поглощённый углекислый газ выделяется из раствора при подогреве и снижении давления;

В лёгкой промышленности — в производстве резины для подошв обуви и в производстве искусственных кож, кожевенном производстве при дублении и нейтрализации кожи после кислого дубления, текстильной промышленности при отделке шёлковых и хлопчатобумажных тканей;

В пищевой промышленности — в хлебопечении, производстве кондитерских изделий, приготовлении газированных напитков.

В кулинарии[править | править код]

Основное применение пищевой соды в пищевой промышленности и в быту — кулинария, где применяется, преимущественно, в качестве основного или дополнительного разрыхлителя в составе кислого и пресного теста. При добавлении питьевой соды в кислое тесто происходит реакция с молочной кислотой, продуцированной при заквашивании дрожжевыми микроорганизмами, при этой реакции выделяется углекислый газ, вспучивающий тесто.

При добавлении в пресное тесто углекислый газ выделяется при выпечке из-за термического разложения.

При применении соды в чистом виде важно соблюсти правильную дозировку, так как она оставляет в продукте карбонат натрия, дающий определённый привкус. Порядок замешивания для теста: соду — в муку, кислые компоненты (уксус, кефир и пр.) — в жидкость.

В медицине[править | править код]

Пероральный приём[править | править код]

Применяется в качестве антацидного средства. При пероральном приёме снижает кислотность желудочного сока и используется для лечения язвенной болезни желудка и двенадцатиперстной кишки [2]. Тем не менее, в результате применения может возникнуть кислотный рикошет, так как при реакции содой с соляной кислотой происходит выделение CO2, который оказывает раздражающее действие на стенку желудка, усиливая выделение гастрина[2].

Традиционно раствор питьевой соды используется для дезинфекции зубов и дёсен при зубных болях[3] и полости рта и горла, при сильном кашле, ангине, фарингите[4]. При ринитах, конъюнктивитах, стоматитах, ларингитах и т.п. применяют для полосканий, промываний, ингаляций 0,5 — 2 % растворы[2].

Применяется при почечном тубулярном ацидозе.

Ингаляционное введение[править | править код]

Раствор ингалируется при помощи небулайзера. Усиливает секрецию слизистой трахеобронхиального дерева, тем самым увеличивая количество мокроты и делая её менее вязкой.[2] Может применятся для стимуляции выработки мокроты с целью её бактериологического исследования во фтизиатрии.

Внутривенная инфузия[править | править код]

Препарат выбора для быстрой коррекции метаболического ацидоза во время реанимационных мероприятий. Применяется в качестве антиаритмического средства при отравлении лекарственными средствами удлиняющими интервал QT, такими как трициклические антидепрессанты, кокаин, нейролептики.

Противопоказания[править | править код]

При внутривенном введении быстро повышает pH и вызывает снижение уровня калия и кальция в плазме. Соответственно противопоказан при:

Является источником натрия и повышает осмоляльность плазмы, тем самым увеличивая объём циркулирующей крови. Задержка натрия усиливает отёки и повышает артериальное давление. Таким образом, использование при артериальной гипертензии, совместно с минералокортикоидами, низконатриевой диете должно быть ограничено. Применение при сниженной скорости клубочковой фильтрации может привести к метаболическому алкалозу.

В альтернативной медицине[править | править код]

В альтернативной медицине питьевая сода иногда заявляется как «лекарство» от рака, однако, никакой экспериментально подтверждённой эффективности применения такого «лечения» не существует[5].

Пожаротушение[править | править код]

Гидрокарбонат натрия вместе с карбонатом аммония используется в качестве наполнителя в огнетушителях с сухим наполнением и в стационарных системах сухого пожаротушения. Это применение обусловлено тем, что от воздействия высокой температуры в очаге горения вещество выделяет углекислый газ, атмосфера которого затрудняет доступ кислорода воздуха в очаг горения.

В быту[править | править код]

Применяется как безопасное для здоровья средство для чистки поверхностей столовой и кухонной посуды, поверхностей кухонных столов, иных поверхностей, соприкасающихся с пищей, путем протирки их с помощью влажной тряпки с сухим порошком питьевой соды.

В транспорте[править | править код]

Применяется для нейтрализации следов электролита — серной кислоты на поверхности пластмассовых корпусов свинцовых аккумуляторов насыщенным водным раствором питьевой соды.

Гидрокарбонат натрия хранят в закрытых упаковках, в сухом месте вдали от источников огня. Гарантийный срок хранения натрия двууглекислого — 12 месяцев со дня изготовления. Срок годности не ограничен.

Вещество нетоксично, пожаро- и взрывобезопасно.

Имеет солоноватый, мыльный вкус. При попадании пыли вещества на слизистые оболочки глаз и носа вызывает лёгкое раздражение. При частой работе в атмосфере, загрязнённой пылью двууглекислого натрия, может возникнуть раздражение верхних дыхательных путей. Предельно допустимая концентрация пыли бикарбоната натрия в воздухе производственных помещений 5 мг/м3[6].

ru.wikipedia.org

Химическая формула соды: пищевой, питьевой, кристаллической, технической

Автор Антонина На чтение 5 мин. Опубликовано

Словом «сода» называют несколько сложных химических веществ. Пищевая, питьевая, гидрокарбонат натрия, химическая формула NaHCO3, кислая натриевая соль угольной кислоты. Кальцинированная, бельевая, карбонат натрия, химическая формула Na2CO3, натриевая соль угольной кислоты.

Каустическая, гидроксид натрия, химическая формула NaOH. Есть еще некоторые технические виды соды – кристаллогидраты, содержащие карбонат натрия, и различные марки каустика. Вышеперечисленные соединения имеют различные свойства и химические формулы. Но все они хорошо растворяются в воде, а их растворы имеют более или менее выраженную щелочную реакцию. Рассмотрим их подробнее.

Формула пищевой соды

Гидрокарбонат натрия – химическое название белого кристаллического порошка белого цвета со средним размером кристаллов 0,05 — 0,20 мм. Синонимы, часто встречающиеся в научно-популярной литературе и в быту, — пищевая сода, чайная, питьевая, натрий двууглекислый, бикарбонат натрия.

Двууглекислый натрий (бикарбонат) – широко востребованное вещество в разных сферах жизни. Он применяется в химической промышленности и медицине, в легкой, пищевой отраслях, в металлургии. В пищевой промышленности сода включена в состав добавки E500.

Формула питьевой соды в химии NaHCO3 говорит о том, что это кислая натриевая соль угольной кислоты. Ее химические свойства как у соли сильного основания и слабой кислоты.

Гидрокарбонат натрия активно вступает в реакцию с кислотами. В результате образуется соль соответствующей кислоты, угольная кислота, которая в свою очередь  распадается на углекислый газ и воду. Сильное образование пузырьков  — это углекислый газ, высвобождающийся в процессе реакции.

Вот как происходит реакция с соляной кислотой:

NaHCO3 + HCl → NaCl + h3CO3

h3CO3 → h3O + CO2↑.

Реакция соды пищевой с уксусной кислотой:

NaHCO3 + CH3COOH → CH3COONa + H2O + CO2

В результате взаимодействия соды NaHCO3 с уксусной кислотой Ch4COOH образуются: Ch4COONa – ацетат натрия, вода h3O и углекислый газ CO2.

Многими, наверное, замечено, что если залить пищевую соду кипятком, она так же начинает гаситься, что выражается в обильном образовании пузырьков.  Это происходит реакция термического разложения.

Гидракарбонат натрия термически малоустойчив.  При нагревании порошок соды пищевой разлагается с образованием карбоната натрия (соды кальцинированной) и выделением диоксида углерода, а также воды в газовую фазу.

2NaHCO3↔ Na2CO3 + CO2 + h3O

Аналогично разлагаются и водные растворы бикарбоната натрия.

Растворяется ли пищевая сода в воде?

Есть 2 важные момента в растворении натрия гидрокарбоната в воде. Если мы растворяем соду притемпературе до 50 °С, происходит реакция гидролиза соли. Это обратимое взаимодействие соли с водой. Приводит к образованию слабого электролита.

А если растворяем соду в горячей воде, то уже образуется карбонат натрия, и в этом случае, водный раствор имеет сильнощелочную реакцию. Отсюда вывод: растворимость гидрокарбоната натрия в воде невелика, но при повышении температуры и она повышается.

При взаимодействии с водой двууглекислый натрий распадается на гидроксид натрия NaOH , который придает щелочность воде, угольную кислоту h3CO3, которая, в свою очередь, сразу же распадается на воду и углекислый газ h3O + CO2.

Химическая формула растворения соды в воде:

NaHCO3 + h3O ↔ h3CO3 (h3O + CO2) + NaOH

Водный раствор соды пищевой на растительные и животные ткани практически не действует.

Кальцинированная сода и ее кристаллогидраты

Карбонат натрия, или соду кальцинированную, натриевая соль угольной кислоты, не следует путать с содой пищевой. Химическая формула соды кальцинированной Na2CO3. Еще ее называют содой бельевой, потому что применяют в изготовлении моющих и чистящих средств бытовой химии.  Добывается из природных кристаллогидратов путем термического разложения.  Кальцинированная сода, безводный карбонат натрия, представляет собой бесцветный порошок.

Различные кристаллогидраты кальцинированной соды имеют свои названия:

Эти кристаллогидраты еще называют кристаллической содой, технической содой.

Каустическая сода, гидроксид натрия, химическая формула: NaOH. Ее еще называют едким натром, каустиком, едкой щелочью.  Сильное основание, молекулы полностью диссоциируют в воде. Даже на воздухе то вещество начинает активно впитывать воду и «расплывается».

Опасная едкая щелочь может оставлять на коже сильные ожоги. Поэтому при работе с каустической содой необходимо соблюдать технику безопасности.

Применяется в быту, в химической, целлюлозно-бумажной промышленности, для производства мыла и био-дизельного топлива.

В России производится несколько видов технической соды – натра едкого:

Как видите, сода соде рознь. Принимать внутрь можно только пищевую, остальные виды — технические. Особенно осторожно необходимо обращаться с каустической содой. Это едкое агрессивное вещество оставляет долго незаживающие ожоги на коже. Поэтому, работать с растворами каустика нужно в защитной одежде, маске и резиновых перчатках.

sodaperekis.ru

Карбонат натрия — Википедия

Карбонат натрия

({{{картинка}}})
({{{картинка3D}}})
({{{изображение}}})
Систематическое
наименование
Карбонат натрия
Традиционные названия кальцинированная сода, углекислый натрий
Хим. формула Na2CO3
Молярная масса 105,99 г/моль
Плотность 2,53 г/см³
Температура
 • плавления 854 °C
 • разложения 1000 °C
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 10,33
Растворимость
 • в воде при 20 °C 21,8 г/100 мл
Рег. номер CAS 497-19-8
PubChem 10340
Рег. номер EINECS 207-838-8
SMILES
InChI
Кодекс Алиментариус E500(i)
RTECS VZ4050000
ChEBI 29377
ChemSpider 9916
ЛД50 4 г/кг (крысы, орально)
Пиктограммы СГС
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Карбона́т на́трия (кальцинированная сода) — неорганическое соединение, натриевая соль угольной кислоты с химической формулой Na2CO3. Бесцветные кристаллы или белый порошок, хорошо растворимый в воде. В промышленности в основном получают из хлорида натрия по методу Солвэ. Применяют при изготовлении стекла, для производства моющих средств, используют в процессе получения алюминия из бокситов и при очистке нефти.

Имеет вид бесцветных кристаллов или белого порошка. Существует в нескольких разных модификациях: α-модификация с моноклинной кристаллической решеткой образуется при температуре до 350 °C, затем, при нагреве выше этой температуры и до 479 °C осуществляется переход в β-модификацию, также имеющую моноклинную кристаллическую решетку. При увеличении температуры выше 479 °C соединение переходит γ-модификацию с гексагональной решеткой. Плавится при 854 °C, при нагреве выше 1000 °C разлагается с образованием оксида натрия и диоксида углерода[1][2].

Кристаллогидраты карбоната натрия существуют в разных формах: бесцветный моноклинный Na2CO3·10H2O, при 32,017 °C переходит в бесцветный ромбический Na2CO3·7H2O, последний при нагревании до 35,27 °C бесцветный переходит в ромбический Na2CO3·H2O. В интервале 100—120 °C моногидрат теряет воду.

Свойства карбоната натрия
Параметр Безводный карбонат натрия Декагидрат Na2CO3·10H2O
Молекулярная масса 105,99 а. е. м. 286,14 а. е. м.
Температура плавления 854 °C 32 °C
Растворимость Не растворим в ацетоне, и сероуглероде, малорастворим в этаноле, хорошо растворим в глицерине и воде
Плотность ρ 2,53 г/см³ (при 20 °C) 1,446 г/см³ (при 17 °C)
Стандартная энтальпия образования ΔH −1131 кДж/моль (т) (при 297 К) −4083,5 кДж/моль ((т) (при 297 К)
Стандартная энергия Гиббса образования G −1047,5 кДж/моль (т) (при 297 К) −3242,3 кДж/моль ((т) (при 297 К)
Стандартная энтропия образования S 136,4 Дж/моль·K (т) (при 297 К)
Стандартная мольная теплоёмкость Cp 109,2 Дж/моль·K (жг) (при 297 К)
Растворимость карбоната натрия в воде
Температура, °C 0 10 20 25 30 40 50 60 80 100 120 140
Растворимость, г Na2CO3 на 100 г H2O 7 12,2 21,8 29,4 39,7 48,8 47,3 46,4 45,1 44,7 42,7 39,3

В водном растворе карбонат натрия гидролизуется, что обеспечивает щелочную реакцию среды. Уравнение гидролиза (в ионной форме):

CO32−+h3O⇄HCO3−+OH−{\displaystyle {\mathsf {CO_{3}^{2-}+H_{2}O\rightleftarrows HCO_{3}^{-}+OH^{-}}}}

Первая константа диссоциации угольной кислоты равна 4,5⋅10−7. Все кислоты, более сильные, чем угольная, вытесняют её в реакции с карбонатом натрия. Так как угольная кислота крайне нестойкая, она тут же разлагается на воду и углекислый газ:

Na2CO3+h3SO4→Na2SO4+h3O+CO2↑{\displaystyle {\mathsf {Na_{2}CO_{3}+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+H_{2}O+CO_{2}\uparrow }}}

В природе сода встречается в золе некоторых морских водорослей, а также в виде минералов:

Современные содовые озёра известны в Забайкалье и в Западной Сибири; большой известностью пользуется озеро Натрон в Танзании и озеро Сирлс в Калифорнии[3][неавторитетный источник?]. Трона, имеющая промышленное значение, открыта в 1938 в составе эоценовой толщи Грин-Ривер (Вайоминг, США). Вместе с троной в этой осадочной толще обнаружено много ранее считавшихся редкими минералов, в том числе давсонит, который рассматривается как сырьё для получения соды и глинозёма. В США природная сода удовлетворяет более 40 % потребности страны в этом полезном ископаемом.

До начала XIX века карбонат натрия получали преимущественно из золы некоторых морских водорослей, прибрежных и солончаковых растений путём перекристаллизации относительно малорастворимого NaHCO3 из щёлока.

Способ Леблана[править | править код]

В 1791 году французский химик Никола Леблан получил патент на «Способ превращения глауберовой соли в соду». По этому способу при температуре около 1000 °C запекается смесь сульфата натрия («глауберовой соли»), мела или известняка (карбоната кальция) и древесного угля. Уголь восстанавливает сульфат натрия до сульфида:

Na2SO4+2C→Na2S+2CO2{\displaystyle {\mathsf {Na_{2}SO_{4}+2C\rightarrow Na_{2}S+2CO_{2}}}}

Сульфид натрия реагирует с карбонатом кальция:

Na2S+CaCO3→Na2CO3+CaS{\displaystyle {\mathsf {Na_{2}S+CaCO_{3}\rightarrow Na_{2}CO_{3}+CaS}}}

Полученный расплав обрабатывают водой, при этом карбонат натрия переходит в раствор, сульфид кальция отфильтровывают, затем раствор карбоната натрия упаривают. Сырую соду очищают перекристаллизацией. Процесс Леблана даёт соду в виде кристаллогидрата (см. выше), поэтому полученную соду обезвоживают кальцинированием.

Сульфат натрия получали обработкой каменной соли (хлорида натрия) серной кислотой:

2NaCl+h3SO4→Na2SO4+2HCl{\displaystyle {\mathsf {2NaCl+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2HCl}}}

Выделявшийся в ходе реакции хлороводород улавливали водой с получением соляной кислоты.

Первый содовый завод такого типа в России был основан промышленником М. Прангом и появился в Барнауле в 1864 году.

После появления более экономичного (не остаётся в больших количествах побочный сульфид кальция) и технологичного способа Сольве, заводы, работающие по способу Леблана, стали закрываться. К 1900 году 90 % предприятий производили соду по методу Сольве, а последние фабрики, работающие по методу Леблана, закрылись в начале 1920-х.

Промышленный аммиачный способ (способ Сольве)[править | править код]

Карбонат натрия

В 1861 году бельгийский инженер-химик Эрнест Сольве запатентовал метод производства соды, который используется и по сей день.

В насыщенный раствор хлорида натрия пропускают эквимолярные количества газообразных аммиака и диоксида углерода, то есть как бы вводят гидрокарбонат аммония NH4HCO3:

Nh4+CO2+h3O+NaCl→NaHCO3+Nh5Cl{\displaystyle {\mathsf {NH_{3}+CO_{2}+H_{2}O+NaCl\rightarrow NaHCO_{3}+NH_{4}Cl}}}

Выпавший остаток малорастворимого (9,6 г на 100 г воды при 20 °C) гидрокарбоната натрия отфильтровывают и кальцинируют (обезвоживают) нагреванием до 140—160 °C, при этом он переходит в карбонат натрия:

2NaHCO3→otNa2CO3+h3O+CO2↑{\displaystyle {\mathsf {2NaHCO_{3}{\xrightarrow[{}]{^{o}t}}Na_{2}CO_{3}+H_{2}O+CO_{2}\uparrow }}}

Образовавшийся CO2 возвращают в производственный цикл. Хлорид аммония NH4Cl обрабатывают гидроксидом кальция Ca(OH)2:

2Nh5Cl+Ca(OH)2→CaCl2+2Nh4+2h3O{\displaystyle {\mathsf {2NH_{4}Cl+Ca(OH)_{2}\rightarrow CaCl_{2}+2NH_{3}+2H_{2}O}}}

Полученный NH3 также возвращают в производственный цикл.

Таким образом, единственным отходом производства является хлорид кальция.

Первый содовый завод такого типа в мире был открыт в 1863 в Бельгии; первый завод такого типа в России был основан в районе уральского города Березники фирмой «Любимов, Сольве и Ко» в 1883 году. Его производительность составляла 20 тысяч тонн соды в год. В 2010 году ФАС России отказала фирме Solvay в покупке этого завода, разрешив покупку группе Башкирская химия (ей также принадлежит завод Сода).[источник не указан 2923 дня]

До сих пор этот способ остаётся основным способом получения соды во всех странах.

Способ Хоу[править | править код]

Разработан китайским химиком Хоу (Hou Debang) в 1930-х годах. Отличается от процесса Сольве тем, что не использует гидроксид кальция.

По способу Хоу в раствор хлорида натрия при температуре 40 градусов подается диоксид углерода и аммиак. Менее растворимый гидрокарбонат натрия в ходе реакции выпадает в осадок (как и в методе Сольве). Затем раствор охлаждают до 10 градусов. При этом выпадает в осадок хлорид аммония, а раствор используют повторно для производства следующих порций соды.

Сравнение способов[править | править код]

По методу Хоу в качестве побочного продукта образуется NH4Cl вместо CaCl2 по методу Сольве.

Способ Сольве был разработан до появления процесса Габера, в то время аммиак был в дефиците, поэтому регенерировать его из NH4Cl было необходимо. Метод Хоу появился позже, необходимость регенерации аммиака уже не стояла так остро, соответственно, аммиак можно было не извлекать, а использовать его как азотное удобрение в виде соединения NH4Cl.

Тем не менее NH4Cl содержит хлор, избыток которого вреден для многих растений, поэтому использование NH4Cl в качестве удобрения ограничено. В свою очередь рис хорошо переносит избыток хлора, и в Китае, где применяется NH4Cl для рисоводства, метод Хоу, дающий NH4Cl в качестве побочного продукта, более широко представлен по сравнению с другими регионами.

В настоящее время в ряде стран практически весь искусственно производящийся карбонат натрия вырабатывается по методу Сольве (включая метод Хоу как модификацию), а именно в Европе 94 % искусственно производимой соды, во всем мире — 84 % (2000 год)[4].

Карбонат натрия используют в стекольном производстве; мыловарении и производстве стиральных и чистящих порошков; эмалей, для получения ультрамарина. Также он применяется для смягчения воды паровых котлов и вообще уменьшения жёсткости воды, для обезжиривания металлов и десульфатизации доменного чугуна. Карбонат натрия — исходный продукт для получения NaOH, Na2B4O7, Na2HPO4. Может использоваться в сигаретных фильтрах[5].

В пищевой промышленности карбонаты натрия зарегистрированы в качестве пищевой добавки E500, — регулятора кислотности, разрыхлителя, препятствующего комкованию и слёживанию. Карбонат натрия (кальцинированная сода, Na2CO3) имеет код 500i, гидрокарбонат натрия (пищевая сода, NaHCO3) — 500ii, их смесь — 500iii.

Одна из новейших технологий повышения нефтеотдачи пластов — АСП заводнение, в котором применяется сода в сочетании с ПАВ для снижения межфазного натяжения между водой и нефтью.

В фотографии используется в составе проявителей как ускоряющее средство[6].

Самостоятельно добавляется в моторное масло для предотвращения полимеризации. Концентрация 2 г на 1 л масла.[источник не указан 130 дней]

Предельно допустимая концентрация аэрозоли кальцинированной соды в воздухе производственных помещений — 2 мг/м3[1]. Кальцинированная сода относится к веществам 3-го класса опасности. Аэрозоль кальцинированной соды при попадании на влажную кожу и слизистые оболочки глаз и носа может вызвать раздражение, а при длительном воздействии ее — дерматит.

Сода — общее название технических натриевых солей угольной кислоты.

«Сода» в европейских языках происходит, вероятно, от арабского «suwwad» — общего названия различных видов солянок, растений, из золы которых её добывали в средние века; существуют и другие версии[7]. Кальцинированная сода (карбонат натрия) называется так потому, что для получения её из бикарбоната последний «кальцинируют» (лат. calcinatio, от calx, по сходству с процессом обжига извести), то есть прокаливают.

ru.wikipedia.org

Химическая формула пищевой соды, применение, состав, свойства

Замучила изжога, пора полоскать простуженное горло, захотелось самостоятельно приготовить тесто для сладкого пирога, закончилось моющее средство для посуды, а чашки от чая потемнели, – любая хозяйка, привычным с детства жестом, достает с полки одну и ту же неприметную коробочку с пищевой содой. Неужели она настолько многофункциональна? Нет, не настолько, она гораздо функциональнее.

Читайте подробнее: Полоскания зубов содой.

Химическая формула и ее состав

Пищевая сода, несмотря на простое название в обиходе, – сложное химическое соединение, следовательно, имеет химическую формулу – NaНCO3 (рисунок 1).

Рисунок 1 – Химическая формула и структура пищевой соды.

 

Состоит из одной молекулы натрия (Na), одной молекулы водорода (Н), одной молекулы углерода (C) и трех молекул кислорода (O). Имеет несколько технических названий – гидрокарбонат натрия, бикарбонат натрия, натрий двууглекислый. Является, ничем иным, как кислой солью угольной кислоты и натрия. Все кислые соли начинаются с приставки «гидро».

Название соды требует пояснения: в ней нет ни белков, ни жиров, ни углеводов. Калорийность соды – 0 ккал.

Часто можно услышать название – питьевая, столовая или чайная сода.

Выглядит пищевая сода как белый рыхлый порошок с мелкими кристаллическими частицами. Не имеет запаха.

Свойства

Важные свойства соды: быстро растворяется в воде и не растворяется в спирту и кислоте; обладает слабой щелочной реакцией при растворении; отличный антисептик.

Свойства соды известны давно, причем большинство из них полезны человеку:

  1. Химические свойства. Быстрая растворимость в воде и превращение в щелочной раствор. Это основное свойство всех карбонатов натрия.
  2. Щелочные свойства. Содовый раствор имеет щелочную среду, следовательно, способен понижать (и даже нейтрализовать) кислотность, регулировать щелочно-кислотный баланс. На практике это означает не только устранение изжоги, но и неприятного запаха после полоскания рта или принятия ванны.
  3. Бактерицидные свойства. Пищевая сода – отличный антисептик. Она способна снять воспалительный процесс, зуд от укуса насекомых, детскую опрелость. Лечит гнойное воспаление, грибок ногтей, псориаз. Обладает отхаркивающим свойством, что часто используется при болях в горле («полоскание содой»).
  4. Очищающее свойство. Сода способна вывести из организма шлаки и токсины. Ее часто используют при отравлениях. Это же свойство используют для похудения, поскольку сода еще и выводит лишнюю воду из организма.
  5. Обезболивающее свойство. Пищевая сода снимает болевые ощущения при солнечных или кислотных ожогах. Помогает снять головную и зубную боли.

Это не все свойства пищевой соды, но самые полезные и распространенные.

Читайте также: Кальцинированная сода: формула, производство, свойства и применение.

Реакции

Многие свойства пищевой соды возможны благодаря некоторым химическим реакциям соды с водой, кислотами, в частности, с уксусом и высокой температурой.

Реакции с водой

Разведенная в воде сода превращается в слабый щелочной раствор.  «Слабый» означает, что реакция щелочи не агрессивная, следовательно, может применяться внутрь человека. Это отличает ее от кальцинированной соды, чей раствор слишком агрессивен для слизистых оболочек организма.

Водородный показатель pH содового раствора (сода, растворенная в воде) составляет 8,1 – 9,0. Это физическое подтверждение того, что сода, растворяясь в воде, становится щелочью.

Реакции с кислотами

Щелочь всегда вступает в реакцию с кислотой. Каждая хозяйка, что пробовала самостоятельно стряпать выпечку, сталкивалась с этой реакцией, когда «гасила» соду уксусом. Пищевая сода, реагируя на уксусную кислоту, выделяет углекислый газ и воду.

Рисунок 2 – Химическая реакция пищевой соды и уксусной кислоты.

«Шипение» соды химически выглядит следующим образом (рисунок 2):

Зачем в тесто добавляют гашеную соду? Затем, что химическая реакция пищевой соды и уксусной кислоты высвобождает углекислый газ, он-то и «поднимает» тесто, делая его мягким и воздушным.

Реакция на высокие температуры 

Если подвергнуть гидрокарбонат натрия температурному воздействию (от 60 до 200 градусов), то она станет карбонатом натрия (кальцинированной содой), высвободит воду и углекислый газ (рисунок 3).

Рисунок 3 – Химическая реакция пищевой соды на высокую температуру.

 

Пищевая и кальцинированная сода: сходство и различие

И пищевая (гидрокарбонат натрия), и кальцинированная (карбонат натрия) сода являются щелочами и натриевыми солями угольной кислоты. Обладают схожими химическими свойствами, например, способностью быстро растворятся в воде, и нерастворимостью в спиртовом растворе.

Различие их касается, во-первых, структуры и состава: пищевая сода имеет одну молекулу натрия, а кальцинированная – две. Это влияет на степень агрессивности щелочи. Водородный показатель pH у карбоната натрия равен 11, что существенно выше, чем у пищевой соды.

Во-вторых, сила агрессивность соды влияет на ее способ и место применения: гидрокарбонат – это кулинария и медицина, а карбонат – химическая промышленность.

В-третьих, пищевая сода неопасна в применении, она не вызывает аллергических реакций, зуда и покраснения. Тогда как кальцинированная сода может вызвать ожоги и различные аллергические реакции, этой содой следует пользоваться только в резиновых перчатках.

Читайте также: Кальцинированная сода в быту

Производство

Люди познакомились с пищевой содой очень давно. Она добывалась на некоторых высохших озерах, где соли натрия выпадали на берег белыми сугробами.

Естественное сырье добывали двух видов:

Известная всем химическая формула NaНCO3 получается не естественным, а химическим лабораторным способом. Называется он – аммиачно-хлоридный.

Метод получения гидрокарбоната натрия – аммиачно-хлоридный, разработанный в 19 веке химиком Э. Сольве. Способ актуален и в наши дни.

Промышленный метод производства соды впервые применил французский ученый Н. Леблан, выделив из каменной соли карбонат натрия, в результате получилась кальцинированная сода. Другой француз О.Ж. Френель пропустил каменную соль через аммиачный раствор и углекислый газ. Так был придуман химический способ образования гидрокарбоната или пищевой соды.

Усовершенствовал способ бельгийский химик Э. Сольве, сделав его простым и дешевым. Методом Сольве стали производить (и до сих пор получают) не только кальцинированную, но и пищевую соду.

Области применения

Трудно найти область, где столовая сода не используется:

1) Химическое производство. Гидрокарбонат натрия лежит в основе производства бытовой химии (порошки, чистящие и моющие средства), красителей, органики, составляющих порошка огнетушителя. Известно, что обычную пищевую соду домохозяйки используют как самостоятельное чистящее средство.

2) Легкая промышленность. Сода используется при пропитывании кожи, резины для подошв дубильными веществами. Производство текстиля также не обходится без бикарбоната натрия.

3) Кулинария. Еще не нашли замену соде при создании всевозможных кондитерских изделий и выпечки. Шипучие напитки, типа колы и различных лимонадов, в основе своей имеют реакцию соды и кислоты.

Известная всем столовая сода имеет код пищевой добавки – Е500.

4) Косметология. Во многих масках и очистительных средствах в качестве главного ингредиента входит гидрокарбонат натрия, способный вывести шлаки и лишнюю жидкость, отбелить зубы и лицо, снять покраснение и зуд, убрать неприятный запах.

Читайте подробнее: Маски с содой для лица.

5) Медицина. Почти во всех рецептах лекарственных препаратов традиционной и народной медицины присутствует бикарбонат натрия. Он способен выводить из организма различные токсины, включая тяжелые металлы.

Известно, что сода спасает от изжоги, но и в основе всех брендовых лекарственных препаратов (Гастал, Гевискон и прочие) лежит способность солей натрия нейтрализовать высокую кислотность (щелочное свойство пищевой соды).

Антисептические свойства пищевой соды незаменимы в борьбе с вирусами, бактериями и грибками.

Народная медицина считает соду просто лекарственной панацеей: сода лечит головную и зубную боль; способна понизить температуру; нейтрализовать ожоги кислотой кожи и слизистых оболочек; и даже вылечить рак.

Советы доктора И.П. Неумывакина об использовании пищевой соды

Известный всему миру профессор, доктор медицинских наук, И.П. Неумывакин более 40 лет посвящал свои научные работы изучению влияния пищевой соды на оздоровление организма. По его мнению, главная причина возникновения болезней – это нарушение кислотно-щелочного баланса. А, как известно, сода способствует его восстановлению.

Профессор разработал специальную схему, по которой следует пить содовый раствор, как для лечения, так и для профилактики различных заболеваний. Попадая в кровь, сода разжижает ее и обновляет структуру, тем самым способствует снижению:

И.П. Неумывакин советует не только принимать внутрь содовый раствор, но и полоскать им рот, принимать с ним ванны и делать очищающие маски для лица.

Книги и видеоролики с доктором пользуются огромной популярностью. Беседа «Сода и вода» с И.П. Неумывакиным о здоровье и очищении организма с помощью соды набрала более 1,5 миллиона просмотров:

Читайте также: Как принимать соду по методу Неумывакина.

Техника безопасности

Питьевая сода является абсолютно не токсичным веществом. Но из этого не следует, что она совершенно безопасна. По степени взрывоопасности и пожароопасности имеет 3 класс. Существуют ограничения присутствия бикарбоната натрия в воздухе: 5 мг на кубический метр. А поскольку сода вещество сыпучее, то держать его нужно, как можно дальше от детей и животных.

Упаковываться пищевая сода при больших количествах должна в специальные мешки с плотной многослойной поверхностью (до 50 кг). Индивидуальные упаковки для розничной торговли представляют собой твердую картонную пачку массой 1 кг.

Перевозится сода в любом закрытом транспорте, кроме самолета.

Пищевая сода – универсальное средство, применяемое в различных сферах: бытовой химии, кулинарии, медицине. Но всегда следует помнить, что «лучшее – враг хорошего», и при использовании соды необходимо четко следовать правилам применения и дозировкам.

Применяя раствор внутрь, не забудьте проконсультироваться с врачом.

sodaved.ru

формула, состав, применение :: SYL.ru

Пищевая, или питьевая сода, — широко известное в медицине, кулинарии и бытовом потреблении соединение. Это кислая соль, молекула которой образована положительно заряженными ионами натрия и водорода, анионом кислотного остатка угольной кислоты. Химическое название соды — бикарбонат или гидрокарбонат натрия. Формула соединения по системе Хилла: CHNaO3 (брутто-формула).

Отличие кислой соли от средней

Угольная кислота образуют две группы солей — карбонаты (средние) и гидрокарбонаты (кислые). Тривиальное название карбонатов — соды — появилось еще в древности. Следует различать среднюю и кислую соли по названиям, формулам и свойствам.
Na2CO3 — карбонат натрия, динатриевая соль угольной кислоты, кальцинированная стиральная сода. Служит сырьем для получения стекла, бумаги, мыла, используется как моющее средство.

NaHCO3 — натрия гидрокарбонат. Состав подсказывает, что вещество является мононатриевой солью угольной кислоты. Это соединение отличается наличием двух разных положительных ионов — Na+ и Н+. Внешне кристаллические белые вещества похожи, их трудно отличить друг от друга.

Вещество NaHCO3 считается питьевой содой не потому, что употребляется внутрь для утоления жажды. Хотя с помощью этого вещества можно приготовить шипучий напиток. Раствор этого гидрокарбоната принимают внутрь при повышенной кислотности желудочного сока. При этом происходит нейтрализация избытка протонов Н+, которые раздражают стенки желудка, вызывают боль и жжение.

Физические свойства пищевой соды

Бикарбонат — это белые моноклинные кристаллы. В составе этого соединения присутствуют атомы натрия (Na), водорода (Н), углерода (С) и кислорода. Плотность вещества составляет 2,16 г/см3. Температура плавления — 50–60 °С. Натрия гидрокарбонат — порошок молочно-белого цвета — твердое мелкокристаллическое соединение, растворимое в воде. Питьевая сода не горит, а при нагревании свыше 70 °С разлагается на карбонат натрия, углекислый газ и воду. В производственных условиях чаще применяется гранулированный бикарбонат.

Безопасность пищевой соды для человека

Соединение не обладает запахом, его вкус — горько-соленый. Однако не рекомендуется нюхать и пробовать вещество на вкус. Вдыхание гидрокарбоната натрия может вызвать чихание и кашель. Одно из применений основано на способности пищевой соды нейтрализовать пахнущие вещества. Порошком можно обработать спортивную обувь, чтобы избавиться от неприятного запаха.

Питьевая сода (гидрокарбонат натрия) — безвредное вещество при контакте с кожей, но в твердом виде может вызвать раздражение слизистой оболочки глаз и пищевода. В низких концентрациях раствор не токсичен, его можно принимать внутрь.

Гидрокарбонат натрия: формула соединения

Брутто-формула CHNaO3 редко встречается в уравнениях химических реакций. Дело в том, что она не отображает связь между частицами, которые образуют гидрокарбонат натрия. Формула, обычно используемая для характеристики физических и химических свойств вещества, — NaHCO3. Взаимное расположение атомов отражает шаро-стержневая модель молекулы:

Если узнать из периодической системы значения атомных масс натрия, кислорода, углерода и водорода. то можно подсчитать молярную массу вещества гидрокарбонат натрия (формула NaHCO3):
Ar(Na) — 23;
Ar(O) — 16;
Ar(C) — 12;
Ar(H) — 1;
М (CHNaO3) = 84 г/моль.

Строение вещества

Гидрокарбонат натрия — ионное соединение. В состав кристаллической решетки входит катион натрия Na+, замещающий в угольной кислоте один атом водорода. Состав и заряд аниона — НСО3. При растворении происходит частичная диссоциация на ионы, которые образуют гидрокарбонат натрия. Формула, отражающая структурные особенности, выглядит так:

Растворимость питьевой соды в воде

В 100 г воды растворяется 7,8 г гидрокарбоната натрия. Вещество подвергается гидролизу:
NaHCO3 = Na+ + НСО3;
Н2О ↔ Н+ + ОН;
НСО3 + Н+ = Н2О + СО2↑.
При суммировании уравнений выясняется, что в растворе накапливают гидроксид-ионы (слабощелочная реакция). Жидкость окрашивает фенолфталеин в розовый цвет. Окраска универсальных индикаторов в виде бумажных полосок в растворе соды меняется с желто-оранжевой на серую или синюю.

Реакция обмена с другими солями

Водный раствор гидрокарбоната натрия вступает в реакции ионного обмена с другими солями при условии, что одно из вновь получившихся веществ — нерастворимое; либо образуется газ, который удаляется из сферы реакции. При взаимодействии с хлоридом кальция, как показано на схеме ниже по тексту, получается и белый осадок сарбоната кальция, и углекислый газ. В растворе остаются ионы натрия и хлора. Молекулярное уравнение реакции:

Взаимодействие питьевой соды с кислотами

Гидрокарбонат натрия взаимодействует с кислотами. Реакция ионного обмена сопровождается образованием соли и слабой угольной кислоты. В момент получения она разлагается на воду и углекислый газ (улетучивается).

Стенки желудка человека вырабатывают соляную кислоту, существующую в виде ионов
Н+ и Cl. Если принимать внутрь натрия гидрокарбонат, реакции происходят в растворе желудочного сока с участием ионов:
NaHCO3 = Na+ + НСО3;
HCl = Н+ + Cl;
Н2О ↔ Н+ + ОН;
НСО3 + Н+ = Н2О + СО2↑.
Врачи не рекомендуют постоянно использовать при повышенной кислотности желудка гидрокарбонат натрия. Инструкция к препаратам перечисляет различные побочные действия ежедневного и длительного приема питьевой соды:

Получение пищевой соды

В лаборатории бикарбонат натрия можно получить из кальцинированной соды. Такой же метод применялся раньше в химическом производстве. Современный промышленный способ основан на взаимодействии аммиака с углекислым газом и слабой растворимости питьевой соды в холодной воде. Через раствор хлорида натрия пропускают аммиак и диоксид углерода (углекислый газ). Образуются хлорид аммония и раствор гидрокарбоната натрия. При охлаждении растворимость питьевой соды понижается, тогда вещество легко отделяется с помощью фильтрования.

Где используется гидрокарбонат натрия? Применение пищевой соды в медицине

Многим известно, что атомы металлического натрия энергично взаимодействуют с водой, даже ее парами в воздухе. Реакция начинается активно и сопровождается выделением большого количества теплоты (горением). В отличие от атомов, ионы натрия — стабильные частицы, не наносящие вреда живому организму. Наоборот, они принимают активное участие в регуляции его функций.

Как используется неядовитое для человека и полезное во многих отношениях вещество — гидрокарбонат натрия? Применение основано на физических и химических свойствах питьевой соды. Важнейшие направления — бытовое потребление, пищевая промышленность, здравоохранение, народная медицина, получение напитков.

Среди основных свойств бикарбоната натрия — нейтрализация повышенной кислотности желудочного сока, кратковременное устранение болевого синдрома при гиперацидности желудочного сока, язвенной болезни желудка и 12-перстной кишки. Антисептическое действие раствора питьевой соды применяется при лечении боли в горле, кашля, интоксикации, морской болезни. Промывают им полости рта и носа, слизистые оболочки глаз.

Широко используются разные лекарственные формы бикарбоната натрия, например порошки, которые растворяют и применяют для инфузий. Назначают растворы для приема пациентами внутрь, промывают ожоги кислотами. Для изготовления таблеток и ректальных суппозиториев также используется гидрокарбонат натрия. Инструкция к препаратам содержит подробное описание фармакологического действия, показаний. Список противопоказаний очень короткий — индивидуальная непереносимость вещества.

Использование пищевой соды в быту

Гидрокарбонат натрия — это «скорая помощь» при изжоге и отравлении. С помощью питьевой соды в домашних условиях отбеливают зубы, уменьшают воспаление при угревой болезни, протирают кожу для удаления избытка жирного секрета. Бикарбонат натрия смягчает воду, помогает очистить загрязнения с разных поверхностей.

При ручной стирке вещей из шерстяного трикотажа можно добавить в воду питьевую соду. Это вещество освежает цвет ткани и удаляет запах пота. Нередко при глажении изделий из шелка появляются желтые подпалины от утюга. В таком случае поможет кашица из питьевой соды и воды. Вещества надо как можно быстрее смешать и нанести на пятно. Когда кашица подсохнет, ее следует почистить щеткой, а изделие прополоскать в холодной воде.

В реакции с уксусной кислотой получается ацетат натрия и бурно выделяется углекислый газ, вспенивающий всю массу: NaHCO3 + СН3СООН = Na+ + СН3СОО + Н2О + СО2↑. Этот процесс идет всякий раз, когда при изготовлении шипучих напитков и кондитерских изделий питьевую соду «гасят» уксусом.

Вкус выпечки будет нежнее, если использовать не магазинный синтетический уксус, а сок лимона. На крайний случай можно заменить его смесью 1/2 ч. л. порошка лимонной кислоты и 1 ст. л. воды. Питьевая сода с кислотой добавляется в тесто в числе последних ингредиентов, чтобы можно было сразу ставить выпечку в духовку. Кроме бикарбоната натрия, иногда в качестве разрыхлителя используется гидрокарбонат аммония.

www.syl.ru

Формула пищевой соды и соли. Формула пищевой соды. Сода пищевая: формула, применение

Что представляет собой гидрокарбонат натрия, он же бикарбонат, натрий двууглексилый, а попросту питьевая или пищевая сода, известно многим еще со школьных уроков химии. Сода пищевая — это кислая натриевая соль угольной кислоты. В химии формула соды пищевой определяется как NaHCO 3 .

Химический состав гидрокарбоната натрия

Как и любой продукт, используемый в питании, пищевая сода имеет пищевую ценность, которая определяется количеством белков, минералов, углеводов и макроэлементов. Состав соды пищевой определяется следующими показателями на 100 г съедобной части:

В состав гидрокарбоната натрия не входят белки, жиры, углеводы и пищевые волокна, а ее калорийность составляет 0 ккал. Плотность соды — 2,16 г/см 3 .

Химическая формула соды NaHCO 3 представляет собой кислую натриевую соль угольной кислоты, которая по международным атомным массам составляет 84,00 а.е.

Если провести реакцию соды с кислотами то химическая формула соды пищевой распадется на углекислый газ и воду и будет иметь вначале формулу образования соли и угольной кислоты — NaHCO 3 + HCl → NaCl + H 2 CO 3 , а затем H 2 CO 3 → H 2 O + CO 2 .

В бытовых условиях чаще используется уксусная кислота, при реакции с которой образуется ацетат натрия — NaHCO 3 + CH 3 COOH → CH 3 COONa + H 2 O + CO 2

При термических реакциях под воздействием температур от 60 градусов гидрокарбонат распадается на карбонат натрия, углекислый газ и воду. Температура кипения — 851°С, плавления — 270°С.

Щелочные свойства соды


Пищевая сода — это щелочь, такое утверждение имеет свою доказательную базу. Растворы всех химических веществ определяются значением водородного показателя (рН), характеризующим кислотность или щелочность среды.

Если раствор имеет показатель рН 6 и ниже, он представляет собой кислотную среду. Вещества, растворы которых имеют рН 8 и выше — щелочную среду.

В нейтральной среде (например, в чистой воде) рН равен 7. Раствор пищевой соды имеет рН 9, т.е. является слабой щелочью и способен нейтрализовать опасные для организма человека свойства сильных кислот.

Формула пищевой соды имеет в своем составе элементы, которые характеризуют ее как мягкую щелочь, не оказывающую агрессивного воздействия на мягкие ткани организма, поэтому очень часто отщелачивающие свойства этого продукта используют в лечебных и профилактических целях для оздоровления организма.

Представленный еще в советские времена Государственный стандарт и технические условия натрия двууглекислого предусматривают его изготовление в соответствии установленного еще в 1976 году стандарта технологического регламента. Эти требования включают установленные методы анализа, безопасности, приемки и хранения. Ранее указывался ГОСТ — сода пищевая под номером 2156-76, который использовался в фармакологической, химической, легкой, пищевой промышленности, цветной металлургии, а также народном хозяйстве. В настоящее время нормы этого ГОСТА не пересматривались.

По физико-химическим составляющим сода должна была иметь следующие показатели для 1 и П сорта:

Внешний вид Кристаллический порошок белого цвета, без запаха
Массовая доля двууглекислого натрия (NaHCO3), %, не меньше 99,5

belgdk.ru

Гидрокарбонат натрия — Википедия

Гидрокарбонат натрия
Систематическое
наименование
гидрокарбонат натрия
Традиционные названия пищевая (питьевая) сода, сода двууглекислая, двууглекислый натрий, бикарбонат натрия, кислый углекислый натрий
Хим. формула CHNaO₃
Рац. формула NaHCO3
Состояние твёрдое
Молярная масса 84,0066 г/моль
Плотность 2,159 г/см³
60—200 °C
Растворимость в воде 9,59 г/100 мл
Рег. номер CAS 144-55-8
PubChem 516892
Рег. номер EINECS 205-633-8
SMILES
InChI
Рег. номер EC 205-633-8
Кодекс Алиментариус E500(ii)
RTECS VZ0950000
ChEBI 32139
ChemSpider 8609
ЛД50 4220 мг/кг
NFPA 704
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Гидрокарбона́т на́трия (лат. Natrii hydrocarbonas), другие названия: бикарбона́т на́трия, ча́йная со́да, питьева́я или пищева́я сода, двууглеки́слый натрий — неорганическое соединение, натриевая кислая соль угольной кислоты с химической формулой NaHCO3.

В обычном виде — мелкокристаллический порошок белого цвета.

Используется в промышленности, пищевой промышленности, в кулинарии, в медицине как нейтрализатор химических ожогов кожи и слизистых оболочек концентрированными кислотами и для снижения кислотности желудочного сока. Также применяется в буферных растворах.

Химические свойства

Гидрокарбонат натрия — кислая натриевая соль угольной кислоты. Проявляет все свойства соли сильного основания и слабой кислоты. В водных растворах имеет слабощелочную реакцию. В широком диапазоне концентраций в водном растворе pH раствора изменяется незначительно, на этом основано применение раствора вещества в качестве буферного раствора.

Реакция с кислотами

Гидрокарбонат натрия реагирует с кислотами с образованием соответствующей кислоте соли, например, хлорида натрия, сульфата натрия и угольной кислоты, которая в процессе реакции распадается на углекислый газ и воду, при этом углекислый газ выделяется из раствора в виде пузырьков:

NaHCO3+HCl→NaCl+h3CO3,{\displaystyle {\mathsf {NaHCO_{3}+HCl\rightarrow NaCl+H_{2}CO_{3}}},}
h3CO3→h3O+CO2↑,{\displaystyle {\mathsf {H_{2}CO_{3}\rightarrow H_{2}O+CO_{2}\uparrow }},}
2NaHCO3+h3SO4→Na2SO4+2h3O+2CO2↑.{\displaystyle {\mathsf {2NaHCO_{3}+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2H_{2}O+2CO_{2}\uparrow }}.}

В быту обычно применяется реакция «гашения соды» уксусной кислотой, с образованием ацетата натрия или гашение лимонной кислотой с образование цитрата натрия, реакция с уксусной кислотой:

NaHCO3+Ch4COOH→Ch4COONa+h3O+CO2↑.{\displaystyle {\mathsf {NaHCO_{3}+CH_{3}COOH\rightarrow CH_{3}COONa+H_{2}O+CO_{2}\uparrow }}.}

Термическое разложение

При температуре выше 60 °C гидрокарбонат натрия начинает распадаться на карбонат натрия, углекислый газ и воду (процесс разложения наиболее эффективен при 200 °C, при более высоких температурах карбонат натрия начинает распадаться на оксид натрия и углекислый газ):

2NaHCO3→60−200∘CNa2CO3+h3O+CO2↑.{\displaystyle {\mathsf {2NaHCO_{3}{\xrightarrow {60-200^{\circ }C}}Na_{2}CO_{3}+H_{2}O+CO_{2}\uparrow }}.}

При этом процессе выделения воды в виде водяного пара и углекислого газa масса исходного продукта уменьшается примерно на 37 %[источник не указан 320 дней].

Получение

В промышленности гидрокарбонат натрия получают аммиачно-хлоридным способом[1]. В концентрированный раствор хлорида натрия, насыщенный аммиаком, под давлением пропускают углекислый газ. В процессе синтеза происходят две реакции:

Nh4+CO2+h3O→Nh5HCO3{\displaystyle {\mathsf {NH_{3}+CO_{2}+H_{2}O\rightarrow NH_{4}HCO_{3}}}}
Nh5HCO3+NaCl→NaHCO3↓+Nh5Cl.{\displaystyle {\mathsf {NH_{4}HCO_{3}+NaCl\rightarrow NaHCO_{3}\downarrow +NH_{4}Cl}}.}

В холодной воде гидрокарбонат натрия мало растворим, и его отделяют от охлаждённого раствора фильтрованием, а из полученного после фильтрования раствора хлорида аммония снова получают аммиак, возвращаемый в производство вновь:

2Nh5Cl+Ca(OH)2→2Nh4↑+CaCl2+2h3O.{\displaystyle {\mathsf {2NH_{4}Cl+Ca(OH)_{2}\rightarrow 2NH_{3}\uparrow +CaCl_{2}+2H_{2}O}}.}

Применение

Двууглекислый натрий (бикарбонат) применяется в химической, пищевой, лёгкой, медицинской, фармацевтической промышленности, цветной металлургии, в быту. Зарегистрирован в качестве пищевой добавки E500 (ii), входит в состав пищевой добавки E500.

В химической промышленности

Применяется для производства красителей, пенопластов и других органических продуктов, фторорганических соединений, продуктов бытовой химии, наполнителей в огнетушителях, Реагент для отделения диоксида углерода, сероводорода из газовых смесей, например, отходящих газов топливосжигающих установок. В этом процессе углекислый газ поглощается раствором гидрокарбоната натрия при повышенном давлении и пониженной температуре, далее поглощённый углекислый газ выделяется из раствора при подогреве и снижении давления;

В лёгкой промышленности — в производстве резины для подошв обуви и в производстве искусственных кож, кожевенном производстве при дублении и нейтрализации кожи после кислого дубления, текстильной промышленности при отделке шёлковых и хлопчатобумажных тканей;

В пищевой промышленности — в хлебопечении, производстве кондитерских изделий, приготовлении газированных напитков.

В кулинарии

Основное применение пищевой соды в пищевой промышленности и в быту — кулинария, где применяется, преимущественно, в качестве основного или дополнительного разрыхлителя в составе кислого и пресного теста. При добавлении питьевой соды в кислое тесто происходит реакция с молочной кислотой, продуцированной при заквашивании дрожжевыми микроорганизмами, при этой реакции выделяется углекислый газ, вспучивающий тесто.

При добавлении в пресное тесто углекислый газ выделяется при выпечке из-за термического разложения.

При применении соды в чистом виде важно соблюсти правильную дозировку, так как она оставляет в продукте карбонат натрия, дающий определённый привкус. Порядок замешивания для теста: соду — в муку, кислые компоненты (уксус, кефир и пр.) — в жидкость.

В медицине

Традиционно раствор питьевой соды используется для дезинфекции зубов и дёсен при зубных болях[2] и полости рта и горла, при сильном кашле, ангине, фарингите[3], а также как общепринятое средство от изжоги и болей в желудке.

Применяется при заболеваниях, сопровождающиеся выраженным ацидозом (при диабете, инфекциях и др), для борьбы с ацидозом при хирургических вмешательствах (назначается 3-5 г. внутрь)[4].

Применяется в качестве антиаримтмического средства[4].

Как антацидной средство (как и все другие щелочи) применяется при язвенной болезни желудка, и двенадцатиперстной кишки, при повышенной кислотности желудочного сока[4].

Имеются так же данные о применении препарата (в виде капельных и внутривенных вливаний) при гипертонической болезни, симптоматической почечной гипертонии[5], и хронической почечной недостаточности[6]. Эффект связан с увеличением выделения ионов натрия и хлора и возрастанием осмотического диуреза[4].

В виде свечей применяется против укачивания при морской и воздушной болезнях[4]

Применяется в качестве отхаркивающего средства, т.к. повышая щелочные резервы крови, сдвигает в щелочную сторону реакцию бронхиальной слизи, делая мокроту менее вязкой[4].

При ринитах, конъюнктивитах, стоматитах, ларингитах и т.п. применяют для полосканий, промываний, ингаляций 0,5 - 2% р-ры гидрокарбоната натрия[4].

Иногда применяется внутривенно — с целью быстрого устранения метаболического ацидоза во время реанимационных мероприятий, инфекциях, заболеваниях почек, наркозах[4].

Нужно иметь ввиду, что в результате применения может возникнуть т.н. кислотный рикошет (при реакции содой с соляной кислотой происходит выделение СО2, который оказывает раздражающее действие на стенку желудка, усиливая выделение гастрина[4]).

В альтернативной медицине питьевая сода иногда заявляется как «лекарство» от рака, однако, никакой экспериментально подтверждённой эффективности применения такого «лечения» не существует[7].

Противопоказания к применению в медицинских целях

Индивидуальная гиперчувствительность; состояния, сопровождающиеся развитием алкалоза; гипокальциемия, при приеме внутрь повышается риск алкалоза и развития тетанических судорог, гипохлоремия — снижение концентрации в крови ионов Cl-, в том числе вызванная рвотой, или снижением всасывания в желудочно-кишечном тракте, может привести к тяжёлому алкалозу.

Отёки, артериальная гипертензия, при приёме состояние больного может ухудшиться, анурия или олигурия, при этих заболевания повышается риск избыточной задержки натрия в организме.

Пожаротушение

Гидрокарбонат натрия вместе с карбонатом аммония используется в качестве наполнителя в огнетушителях с сухим наполнением и в стационарных системах сухого пожаротушения. Это применение обусловлено тем, что от воздействия высокой температуры в очаге горения вещество выделяет углекислый газ, атмосфера которого затрудняет доступ кислорода воздуха в очаг горения.

В быту

Применяется как безопасное для здоровья средство для чистки поверхностей столовой и кухонной посуды, поверхностей кухонных столов, иных поверхностей, соприкасающихся с пищей, путем протирки их с помощью влажной тряпки с сухим порошком питьевой соды.

В транспорте

Применяется для нейтрализации следов электролита — серной кислоты на поверхности пластмассовых корпусов свинцовых аккумуляторов насыщенным водным раствором питьевой соды.

Производство

В Российской Федерации двууглекислый натрий выпускается в соответствии с требованиями[8] и техническими условиями[9], выпускается на предприятиях АО «Башкирская содовая компания» в г. Стерлитамак, Республика Башкортостан, а также на Крымском содовом заводе в г. Красноперекопск, Крымский полуостров[10].

Хранение

Гидрокарбонат натрия хранят в закрытых упаковках, в сухом месте вдали от источников огня. Гарантийный срок хранения натрия двууглекислого — 12 месяцев со дня изготовления. Срок годности не ограничен.

Безопасность

Вещество нетоксично, пожаро- и взрывобезопасно.

Имеет солоноватый, мыльный вкус. При попадании пыли вещества на слизистые оболочки глаз и носа вызывает лёгкое раздражение. При частой работе в атмосфере, загрязнённой пылью двууглекислого натрия, может возникнуть раздражение верхних дыхательных путей. Предельно допустимая концентрация пыли бикарбоната натрия в воздухе производственных помещений 5 мг/м3[11].

Примечания

  1. Глинка Н. Л. Общая химия. — М.: «Химия», 1977, переработанное. — С. 441. — 720 с.
  2. ↑ Полоскание при зубной боли - рекомендации » Аденто.ру
  3. ↑ Полоскание рта содой как средство от воспалений
  4. 1 2 3 4 5 6 7 8 9 Машковский М.Д. Лекарственные средства (пособие по фармокотерапии для врачей). — Медицина, 1998. — С. 112. — 688 с.
  5. Шульцев Г.П., Захарченко В.Н., Барицкий В.Н. и др. К применению гидрокарбоната натрия при гипертонической болезни и почечных гипертониях.. — Киев: Клиническая медицина №10, 1974. — С. 134-138.
  6. Рябов С.И. Современные методы лечения хронической почечной недостаточности.. — Киев: Клиническая медицина №10, 1974. — С. 134-138.
  7. ↑ Sodium Bicarbonate (копия Archive.org) // American Cancer Society, 11/28/2008 (англ.): «Available peer-reviewed medical journals do not support claims that sodium bicarbonate works as a cancer treatment.»
  8. ↑ ГОСТ 2156-76 «Натрий двууглекислый. Технические условия» и ГОСТ 32802-2014
  9. ↑ «Добавки пищевые. Натрия карбонаты Е500. Общие технические условия» на предприятии «Сода»
  10. ↑ Данный объект расположен на территории Крымского полуострова, бо́льшая часть которого является объектом территориальных разногласий между Россией, контролирующей спорную территорию, и Украиной, в пределах признанных международным сообществом границ которой спорная территория находится. Согласно федеративному устройству России, на спорной территории Крыма располагаются субъекты Российской Федерации — Республика Крым и город федерального значения Севастополь. Согласно административному делению Украины, на спорной территории Крыма располагаются регионы Украины — Автономная Республика Крым и город со специальным статусом Севастополь.
  11. ↑ ГОСТ 2156-76 «Натрий двууглекислый. Технические условия» Архивная копия от 13 января 2010 на Wayback Machine

Литература

wikipedia.bio

Химическая формула и свойства пищевой соды -

Химическое название, формула и свойства пищевой соды

Свойства пищевой соды позволяют широко использовать ее в промышленности и домашнем хозяйстве. Формула соды — NaHCO3.

Гидрокарбонат натрия, или сода, – это белый кристаллический порошок со средним размером кристаллов 0,05 — 0,20 мм. В научно-популярной литературе и статьях о домашнем хозяйстве можно встретить такие названия соды, как пищевая сода, чайная, натрий двууглекислый, бикарбонат натрия.

Благодаря своим химическим свойствам, сода применяется в химической промышленности, в медицине, в пищевой промышленности.

Na2CO3 (натрия карбонат) — химическая формула кальцинированной соды; Na2CO3·10h3O — хозяйственная сода; NaHCO3 — пищевая сода.

Использование свойств пищевой соды в кулинарии

Пищевую соду повсеместно используют в кулинарии.
Все знают, что если залить пищевую соду кипятком, она начинает гаситься, что выражается в обильном образовании пузырьков. Это происходит реакция термического разложения.

При нагревании или смешивании с кислотой сода выделяет пары углекислого газа. Благодаря этому свойству пищевой соды можно добиться легкости и воздушности разных видов теста.

При взаимодействии уксуса и соды происходит реакция с образованием воды и углекислого газа.
Вместо столового уксуса можно взять лимонный сок, яблочный или винный уксус.

Применение пищевой соды для лечения в домашних условиях

Очень часто соду используют в домашних условиях для облегчения симптомов различных заболеваний:

  • слабый раствор соды в воде или молоке пьют при кашле и изжоге;
  • при боле в горле можно прополоскать горло теплым раствором соды;
  • можно мыть ноги водой с содой для размягчения кожи ног и профилактики грибка ногтей;
  • полоскание рта и горла водой с содой и солью способствует отбеливанию зубов и профилактике гриппа и ОРЗ в период эпидемий.

Конечно, не следует заменять содой лечение, прописанное врачом, или самостоятельно лечить содой детей. Но для взрослых людей такие процедуры безвредны и довольно эффективны.

Как используются свойства пищевой соды в домашнем хозяйстве

Неплохо проявила себя пищевая сода и как чистящее средство. Так ее можно использовать для чистки ванн, унитазов, кафеля, алюминиевых кастрюль, посуды, ковров, серебра и для стирки белья.

Пищевая сода обладает хорошими обеззараживающими и противогрибковыми свойствами. Многие хозяйки сегодня отказываются от синтетических моющих средств и предпочитают мыть посуду и стирать пищевой содой вручную или в стиральной машине.

Сода представляет собой эффективное дезинфицирующее и дезодорирующее и моющее средство. При этом она безопасна для здоровья, не вызывает аллергических реакций.

Стирать можно содой в чистом виде, можно смешивать соду с мыльной стружкой или добавлять соду к стиральному порошку.


В любом случае, пищевая сода, благодаря своим свойствам, способна:

  • сделать вещи более мягкими;
  • отбелить белое;
  • защитить от накипи стиральную машину;
  • продезинфицировать.

Содовым раствором можно стирать детские вещи и белье. Добавление пищевой соды в стиральный порошок при стирке в стиральной машинке увеличивает эффективность.

Для безопасной и качественной стирки детских вещей можно использовать натуральный детский порошок Чистаун на основе мыла и соды.

В составе порошка:

  • натуральное мыло;
  • сода;
  • лимонная кислота.

Химическая формула и свойства пищевой соды позволяют сделать вывод о ее безопасности и эффективности в домашнем хозяйстве.

chistown.ru

Гидроксид натрия — Википедия

Гидрокси́д на́трия (лат. Nátrii hydroxídum; другие названия — каустическая сода, едкий натр) — неорганическое химическое вещество, самая распространённая щёлочь, химическая формула NaOH. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Интересна история тривиальных названий как гидроксида натрия, так и других щелочей. Название «едкая щёлочь» обусловлено свойством разъедать кожу (вызывая сильные ожоги), бумагу и другие органические вещества. До XVII века щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой, а карбонат калия — поташом. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.

Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.

Термодинамика растворов

ΔH0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.

Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (ромбическая сингония), температура плавления +65,1 °C; плотность 1,829 г/см³; ΔH0обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5Н2О (температура плавления +15,5 °C).

Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в следующие реакции:

с кислотами, амфотерными оксидами и гидроксидами
NaOH+HCl→NaCl+h3O{\displaystyle {\mathsf {NaOH+HCl\rightarrow NaCl+H_{2}O}}}
NaOH+h3S→NaHS+h3O{\displaystyle {\mathsf {NaOH+H_{2}S\rightarrow NaHS+H_{2}O}}} (кислая соль, при отношении 1:1)
2NaOH+h3S→Na2S+2h3O{\displaystyle {\mathsf {2NaOH+H_{2}S\rightarrow Na_{2}S+2H_{2}O}}} (в избытке NaOH)

Общая реакция в ионном виде:

OH−+H+→h3O{\displaystyle {\mathsf {OH^{-}+H^{+}\rightarrow H_{2}O}}}
  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
2NaOH+ZnO →500−600oC Na2ZnO2+h3O{\displaystyle {\mathsf {2NaOH+ZnO\ {\xrightarrow[{}]{500-600^{o}C}}\ Na_{2}ZnO_{2}+H_{2}O}}}
2NaOH+ZnO+h3O→Na2[Zn(OH)4]{\displaystyle {\mathsf {2NaOH+ZnO+H_{2}O\rightarrow Na_{2}[Zn(OH)_{4}]}}} — в растворе
с амфотерными гидроксидами
NaOH+Al(OH)3 →1000oC NaAlO2+2h3O{\displaystyle {\mathsf {NaOH+Al(OH)_{3}\ {\xrightarrow {1000^{o}C}}\ NaAlO_{2}+2H_{2}O}}} — при сплавлении
3NaOH+Al(OH)3→Na3[Al(OH)6]{\displaystyle {\mathsf {3NaOH+Al(OH)_{3}\rightarrow Na_{3}[Al(OH)_{6}]}}} — в растворе
с солями в растворе:
2NaOH+CuSO4→Cu(OH)2↓+Na2SO4{\displaystyle {\mathsf {2NaOH+CuSO_{4}\rightarrow Cu(OH)_{2}\!\downarrow +Na_{2}SO_{4}}}}

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

c неметаллами:

например, с фосфором — с образованием гипофосфита натрия:

4P+3NaOH+3h3O→Ph4↑+3Nah3PO2{\displaystyle {\mathsf {4P+3NaOH+3H_{2}O\rightarrow PH_{3}\!\uparrow +3NaH_{2}PO_{2}}}}

с серой:

3S+6NaOH→2Na2S+Na2SO3+3h3O{\displaystyle {\mathsf {3S+6NaOH\rightarrow 2Na_{2}S+Na_{2}SO_{3}+3H_{2}O}}}
с галогенами
2NaOH+Cl2→NaClO+NaCl+h3O{\displaystyle {\mathsf {2NaOH+Cl_{2}\rightarrow NaClO+NaCl+H_{2}O}}} (дисмутация хлора в разбавленном растворе при комнатной температуре)
6NaOH+3Cl2→NaClO3+5NaCl+3h3O{\displaystyle {\mathsf {6NaOH+3Cl_{2}\rightarrow NaClO_{3}+5NaCl+3H_{2}O}}} (дисмутация хлора при нагревании в концентрированном растворе)
с металлами

Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:

2Al+2NaOH+6h3O→2Na[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\!\uparrow }}}

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

с эфирами, амидами и алкилгалогенидами (гидролиз):
Гидролиз эфиров

с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.

с многоатомными спиртами — с образованием алкоголятов:
HOCh3Ch3OH+2NaOH→NaOCh3Ch3ONa+2h3O{\displaystyle {\mathsf {HOCH_{2}CH_{2}OH+2NaOH\rightarrow NaOCH_{2}CH_{2}ONa+2H_{2}O}}}

Качественное определение ионов натрия[править | править код]

Атомы натрия придают пламени жёлтое свечение.
  1. По цвету пламени горелки — атомы натрия придают пламени жёлтую окраску
  2. С использованием специфических реакций на ионы натрия
Реагент Фторид аммония Нитрит цезия-калия-висмута Ацетат магния Ацетат цинка Пикро-

лоновая кислота

Диокси-

винная кислота

Бромбензол-

сульфокислота

Ацетат уранила-цинка
Цвет осадка белый бледно-жёлтый жёлто-зелёный жёлто-зелёный белый белый бледно-жёлтый зеленовато-жёлтый

Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.

Химические методы получения гидроксида натрия[править | править код]

К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.

В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.

Пиролитический метод[править | править код]

Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия (например, в муфельной печи). В качестве сырья может быть использован и гидрокарбонат натрия, разлагающийся при нагревании на карбонат натрия, углекислый газ и воду:

2NaHCO3 →250oC Na2CO3+CO2↑+ h3O{\displaystyle {\mathsf {2NaHCO_{3}\ {\xrightarrow {250^{o}C}}\ Na_{2}CO_{3}+CO_{2}\!\uparrow +\ H_{2}O}}}
Na2CO3 →1000oC Na2O+CO2↑{\displaystyle {\mathsf {Na_{2}CO_{3}\ {\xrightarrow {1000^{o}C}}\ Na_{2}O+CO_{2}\!\uparrow }}}

Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:

Na2O+h3O→2NaOH{\displaystyle {\mathsf {Na_{2}O+H_{2}O\rightarrow 2NaOH}}}
Известковый метод[править | править код]

Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:

Na2CO3+Ca(OH)2→2NaOH+CaCO3↓{\displaystyle {\mathsf {Na_{2}CO_{3}+Ca(OH)_{2}\rightarrow 2NaOH+CaCO_{3}\!\downarrow }}}

В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.

Ферритный метод[править | править код]

Ферритный метод получения гидроксида натрия состоит из двух этапов:

Na2CO3+Fe2O3→850oC2NaFeO2+CO2↑{\displaystyle {\mathsf {Na_{2}CO_{3}+Fe_{2}O_{3}{\xrightarrow {850^{o}C}}2NaFeO_{2}+CO_{2}\!\uparrow }}}
2NaFeO2+2h3O →H+ 2NaOH+Fe2O3⋅h3O↓{\displaystyle {\mathsf {2NaFeO_{2}+2H_{2}O\ {\xrightarrow {H^{+}}}\ 2NaOH+Fe_{2}O_{3}\cdot H_{2}O\!\downarrow }}}

Первая реакция представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 800 – 900°С. При этом образуется спек — феррит натрия и выделяется двуокись углерода. Далее спёк обрабатывают (выщелачивают) водой по второй реакции; получается раствор гидроксида натрия и осадок Fe2O3⋅{\displaystyle \cdot }nH2О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.

Электрохимические методы получения гидроксида натрия[править | править код]

Способ основан на электролизе растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:

2NaCl+2h3O→h3↑+Cl2↑+2NaOH{\displaystyle {\mathsf {2NaCl+2H_{2}O\rightarrow H_{2}\!\uparrow +Cl_{2}\!\uparrow +2NaOH}}}

Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).

В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора, % 99 96 98,5
Электроэнергия, кВт·ч 3150 3260 2520
Концентрация NaOH, % 50 12 35
Чистота хлора, % 99,2 98 99,3
Чистота водорода, % 99,9 99,9 99,9
Массовая доля O2 в хлоре, % 0,1 1—2 0,3
Массовая доля Cl в NaOH, % 0,003 1—1,2 0,005

В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.

Диафрагменный метод[править | править код]
Схема старинного диафрагменного электролизера для получения хлора и щёлоков: А — анод, В — изоляторы, С — катод, D — пространство заполненное газами (над анодом — хлор, над катодом — водород), М — диафрагма

Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.

Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.

Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.

Противоток — очень важная особенность устройства диафрагменного электролизера. Именно благодаря противоточному потоку, направленному из анодного пространства в катодное через пористую диафрагму, становится возможным раздельное получение щёлоков и хлора. Противоточный поток рассчитывается так, чтобы противодействовать диффузии и миграции OH- ионов в анодное пространство. Если величина противотока недостаточна, тогда в анодном пространстве в больших количествах начинает образовываться гипохлорит-ион (ClO-), который затем может окисляться на аноде до хлорат-иона ClO3-. Образование хлорат-иона серьёзно снижает выход по току хлора и является основным побочным процессом в этом методе получения гидроксида натрия. Также вредит и выделение кислорода, которое, к тому же, ведёт к разрушению анодов и, если они из углеродных материалов, попаданию в хлор примесей фосгена.

Анод:
2Cl−→Cl2+2e−{\displaystyle {\mathsf {2Cl^{-}\!\rightarrow Cl_{2}\!+2e^{-}}}} — основной процесс
2h3O→O2+4H++4e−{\displaystyle {\mathsf {2H_{2}O\rightarrow O_{2}+4H^{+}\!+4e^{-}}}}
6ClO3−+3h3O→2ClO3−+4Cl−+1.5O2↑+ 6H++6e−{\displaystyle {\mathsf {6ClO_{3}^{-}\!+3H_{2}O\rightarrow 2ClO_{3}^{-}+4Cl^{-}\!+1.5O_{2}\!\uparrow \!+\ 6H^{+}\!+6e^{-}}}}
Катод:
2h3O+2e−→h3↑+2OH−{\displaystyle {\mathsf {2H_{2}O+2e^{-}\!\rightarrow H_{2}\!\uparrow +2OH^{-}}}} — основной процесс
ClO−+h3O+2e−→Cl−+2OH−{\displaystyle {\mathsf {ClO^{-}+H_{2}O+2e^{-}\!\rightarrow Cl^{-}+2OH^{-}}}}
ClO3−+3h3O+6e−→Cl−+6OH−{\displaystyle {\mathsf {ClO_{3}^{-}+3H_{2}O+6e^{-}\!\rightarrow Cl^{-}+6OH^{-}}}}

В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их, в основном, заменили титановые аноды с окисно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые.

На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.

Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией.

Обратную, то есть кристаллизовавшуюся в осадок, поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол. От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.

Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита, предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния.

Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.

Мембранный метод[править | править код]

Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.

С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.

В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода. Из анодного пространства вытекает поток обеднённого анолита, содержащего также примеси гипохлорит- и хлорат-ионов и хлор, а из катодного — щёлока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.

Щёлочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щёлочь, получаемую ртутным методом.

Однако питающий раствор соли (как свежий, так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка объясняется высокой стоимостью полимерных катионообменных мембран и их уязвимостью к примесям в питающем растворе.

Кроме того, ограниченная геометрическая форма, а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.

Схема мембранного электролизера.
Ртутный метод с жидким катодом[править | править код]

В ряду электрохимических методов получения щёлоков самым эффективным способом является электролиз с ртутным катодом. Щёлоки, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (для некоторых производств это критично). Например, в производстве искусственных волокон можно применять только высокочистый каустик), а по сравнению с мембранным методом организация процесса при получении щёлочи ртутным методом гораздо проще.

Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводящими коммуникациями.

Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые, угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего поваренной соли.

На аноде происходит окисление ионов хлора из электролита, и выделяется хлор:

2Cl−→Cl2+2

ru.wikipedia.org

Гидрокарбонаты — Википедия

Материал из Википедии — свободной энциклопедии

Модель иона гидрокарбоната HCO3

Гидрокарбона́ты — кислые соли угольной кислоты H2CO3. Формула аниона: HCO−
3. Устаревшие названия гидрокарбонатов: кислый, углекислый, двууглекислый, бикарбонаты.

Гидрокарбонаты щелочных металлов растворимы в воде. Также в воде хорошо растворимы гидрокарбонаты щёлочноземельных металлов, в отличие от карбонатов.

  • Гидрокарбонаты образуются при длительном пропускании CO2 через раствор, содержащий карбонат:
CaCO3+h3O+CO2→Ca(HCO3)2{\displaystyle {\mathsf {CaCO_{3}+H_{2}O+CO_{2}\rightarrow Ca(HCO_{3})_{2}}}}
NaCl+Nh4+CO2+h3O→NaHCO3+Nh5Cl{\displaystyle {\mathsf {NaCl+NH_{3}+CO_{2}+H_{2}O\rightarrow NaHCO_{3}+NH_{4}Cl}}}

Гидрокарбонат натрия плохо растворим в холодной воде, поэтому его можно отделить от хлорида аммония фильтрованием.

  • При нагревании гидрокарбонаты разлагаются на соответствующий карбонат, воду и углекислый газ:
2NaHCO3→Na2CO3+h3O+CO2{\displaystyle {\mathsf {2NaHCO_{3}\rightarrow Na_{2}CO_{3}+H_{2}O+CO_{2}}}}
  • Гидролиз гидрокарбонат-иона происходит по схеме:
HCO3−+h3O⇄OH−+h3CO3{\displaystyle {\mathsf {HCO_{3}^{-}+H_{2}O\rightleftarrows OH^{-}+H_{2}CO_{3}}}}

В итоге раствор гидрокарбонатов имеет щелочную реакцию.

  • Реагирует со щелочами:
HCO3−+OH−→CO32−+h3O{\displaystyle {\mathsf {HCO_{3}^{-}+OH^{-}\rightarrow CO_{3}^{2-}+H_{2}O}}}
HCO3−+H+→h3O+CO2↑{\displaystyle {\mathsf {HCO_{3}^{-}+H^{+}\rightarrow H_{2}O+CO_{2}\uparrow }}}

Гидрокарбонат натрия (сода) используется в производстве искусственных минеральных вод и заправки огнетушителей, в кондитерском деле и хлебопечении, в быту, в медицине.

Гидрокарбонаты кальция и магния Са(НСО3)2, Mg(НСО3)2 обусловливают временную жёсткость воды[1].

В организме гидрокарбонаты являются буферными веществами, регулирующими постоянство реакции крови[1].

  • Кнунянц И. Л. и др. т. 3 Мед-Пол // Химическая энциклопедия. — М.: Большая Российская Энциклопедия, 1992. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8.
  • Ф. Н. Капуцкий, В. Ф. Тикавый. Пособие по химии для поступающих в вузы. — Минск: Выш. школа, 1979. — С. 384.
  • Г. П. Хомченко. Химия для поступающих в вузы. — М.: Высшая школа, 1994. — С. 447.
  1. 1 2 [1]XuMuK.ru — гидрокарбонаты

ru.wikipedia.org

Пищевая сода — химическая формула, состав, получение

Пищевая сода (гидрокарбонат натрия) — кислая соль, состоящая из натрия и угольной кислоты. Выглядит как белый порошок, состоящий из мелких кристаллов. В качестве пищевой добавки встречается в кулинарии и пищевой промышленности. В виде растворов используется и в медицине.

Химическая формула пищевой соды

Гидрокарбонат натрия имеет формулу NaHCO3, где Na — натрий, H — водород, CO — углерод.

Значение атомной массы — 84,00 а.е.

Молярная масса вещества составляет 84,007 г/моль.

Плотность натрий двууглекислого составляет 2,16 г/см3.

Формула реакции пищевой соды и уксуса

NaHCO3 + Ch4COOH →  Ch4COONa + CO2↑ + h3O

Формула реакции пищевой соды и лимонной кислоты

Н3С6Н5О7 + 3NaHCO3 → Na3C6H5O7 + 3CO2 + 3h3O

Об истории открытия

Впервые упоминания о соде появляются в воспоминаниях Диоскорида Педания — врача из Рима, который описал метод получения порошка с помощью упаривания вещества из озёрной воды.

Первая «искусственная» сода появилась только в XVIII веке. Для искусственного получения вещества в 1736 году химику Анри Дюамелю де Монсо понадобилось использовать метод кристаллизации.Впервые промышленным способом содовый порошок был получен в России. В основу промышленного получения легло открытие химика Эрика Лаксмана, установившего, что сода получается путем спекания древесного угля и природного сульфата натрия. Э. Лаксману удалось опробовать этот метод на заводе по производству стекла в Тальцинске. Но, метод не получил широкого распространения.

Более удачная попытка состоялась в 1791 году, когда французский химик Н. Лебман начал получать соду путем сплавления мела, смеси сульфата натрия и древесного угля. Было создано предприятие, дававшее 120 кг. содового порошка ежедневно.

Технология Лебмана с успехом применялась в Европе, а в 1864 году в России открылся первый завод такого типа. Это было барнаульское предприятие, созданное промышленником М. Прагом. Позже в России открылся крупный завод, дававший 20 000 тонн содового порошка ежегодно.

На новом предприятии производство велось по аммиачной технологии, которая была предложена и запатентована еще 1838—1840 годах. Аммиачный метод был более экономным и позволял получать соду более высокого качества, поэтому к 1916-1920 годам были закрыты все предприятия, работающие по технологии Лебмана.

Химический состав пищевой соды по ГОСТ

Сода, использующаяся в пищевой промышленности. Обозначается как добавка Е500. Согласно ГОСТ, 100 гр. пищевой соды состоит из:

  • Золы — 36,9 гр.
  • Воды — 0,2 гр.
  • Натрия — 24,7 гр.
  • Селена — 0,2 мкг.

Смотрите также: что такое гидроксид натрия.

Калорийность пищевой соды

Натрий двууглекислый не содержит пищевых волокон, белков, жиров и углеводов. Калорийность на 100 гр. — 0 калорий.

Растворимость соды в воде

Бикарбонат натрия хорошо растворяется в воде, образуя другие химические соединения. В горячей воде он растворяется лучше, с холодной взаимодействует слабо.Готовый водный раствор обладает слабой щелочной реакцией. Водный содовый раствор является электролитом с хорошей токопроводимостью.

Пищевая сода — это щелочь или кислота?

Кислотность или щелочность любого раствора химического вещества вычисляется по значению показателя водорода (ph). К растворам с кислотной средой относятся растворы, имеющие pH 6 и ниже. Растворы с pH 8 и более высокими показателями относятся к растворам со щелочной средой.

У водного раствора гидрокарбоната натрия рН равен 9, поэтому он относится к слабой щелочи, способной к нейтрализации действия сильных кислот.

Чем отличается кальцинированная сода от пищевой смотрите в этой статье.

Как добывают пищевую соду?

Естественным способом пищевая сода добывается на берегах высохших содовых водоемов. В природе содовые образования содержатся в целой группе минералов. Самым распространенным считается трона — минерал, из которого содовый порошок получают после тщательной очистки, дробления и нагрева.Природное сырьё для получения соды состоит из обширной группы минеральных образований, содержащих углекислый натрий. Все сырье делится на две группы:

  • Горные породы, содержащие необходимые минералы и подземные воды, обладающие высоким содержанием карбоната натрия.
  • Содовые месторождения, содержащие залежи трона, натрона и галита. Рапные и высохшие озёра, на берегах которых образуются «содовые сугробы».

В России использование минералов для выщелачивания гидрокарбоната натрия прекратилось в 1971 году. Ранее соду добывали в шахтах, выщелачивая вещество раствором, который затем откачивался на поверхность.

На видео репортаж о том, как производят соду в современных условиях в Башкирской компании.

Сейчас содовый порошок получается с помощью аммиачно-хлоридного способа: через концентрат хлорида натрия, предварительно насыщенный аммиаком, пускают углекислый газ. Из полученного вещества химическим путем выделяют соду, а аммиак, остающийся от процесса выделения, возвращают обратно в производственный процесс.

Как хранить пищевую соду?

Большая часть «бытовых» упаковок с содой выпускается в картонных коробках, в которых содержится пакет с содовым порошком. Коробка должна находиться в сухом, прохладном месте и не подвергаться воздействию влаги и солнечных лучей.

Если упаковка открыта, хранить пищевую соду лучше в герметичной емкости — так вы убережете порошок от попадания влаги. Срок хранения открытой упаковки — 6 месяцев, в запечатанной упаковке с соблюдением условий хранения содовый порошок хранится 18 месяцев.

Смотрите далее: пищевая сода — применение в быту.

supersoda.ru


Смотрите также