Обмен веществ схема


Энергетический обмен, подготовка к ЕГЭ по биологии

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза - диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический обмен

Энергетический обмен (диссимиляция - от лат. dissimilis ‒ несходный) - обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

АТФ - аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ - универсального источника энергии. Молекула АТФ состоит из азотистого основания - аденина, углевода - рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи - ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда "∽".

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

studarium.ru

3. Обмен органических соединений (белков, жиров и углеводов)

Белковый обмен

Белковый обмен — использование и преобразование аминокислот белков в организме человека.

При окислении \(1\) г белка выделяется \(17,2\) кДж (\(4,1\) ккал) энергии.

Но организм редко использует большое количество белков для покрытия своих энергетических затрат, так как белки нужны для выполнения других функций (основная функция — строительная). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

В процессе пищеварения белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к клеткам, в которых происходит синтез новых собственных белков, свойственных человеку.

 

 

Уровень содержания аминокислот в крови регулирует печень. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени из образовавшегося аммиака синтезируется мочевина (которая затем выводится вместе с водой почками в составе мочи и частично кожей), а углекислый газ выдыхается через лёгкие.

 

 

Остатки аминокислот используются как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен — совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении \(1\) г углеводов (глюкозы) выделяется \(17,2\) кДж (\(4,1\) ккал) энергии.

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества распадаются в процессе пищеварения до простого сахара глюкозы, всасываются ворсинками тонкого кишечника и попадают в кровь.

 

 

Глюкоза необходима для нормальной работы мозга. Снижение содержания глюкозы в плазме крови с \(0,1\) до \(0,05\) % приводит к быстрой потере сознания, судорогам и гибели.

 

Основная часть глюкозы окисляется в организме до углекислого газа и воды, которые выводятся из организма через почки (вода) и лёгкие (углекислый газ).

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до \(300\) г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

Уровень глюкозы в крови постоянный (\(0,10\)–\(0,15\) %) и регулируется гормонами щитовидной железы, в том числе инсулином. При недостатке инсулина уровень глюкозы в крови повышается, что ведёт к тяжёлому заболеванию — сахарному диабету.

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

Другой гормон поджелудочной железы — глюкагон — способствует превращению гликогена в глюкозу, тем самым повышая её содержание в крови (т. е. оказывает действие, противоположное инсулину).

 

 

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

 

\(1\) г углеводов содержит значительно меньше энергии, чем \(1\) г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров — совокупность процессов преобразования и использования жиров (липидов).

 

При распаде \(1\) г жира выделяется \(38,9\) кДж (\(9,3\) ккал) энергии (в \(2\) раза больше, чем при расщеплении \(1\) г белков или углеводов).

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи, всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки. 

 

 

Как и углеводы, жиры распадаются до углекислого газа и воды и выводятся тем же путём.

 

 

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

 

Значение жиров

Потребность в жирах определяется энергетическими потребностями организма в целом и составляет в среднем \(80\)–\(100\) г в сутки. Избыток жира откладывается в подкожной жировой клетчатке, в тканях некоторых органов (например печени), а также и на стенках кровеносных сосудов.

 

 

Если в организме недостаёт одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы — в жиры. В свою очередь жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счёт жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.

 

 

Подсчитано, что взрослому человеку для нормальной жизнедеятельности необходимо не менее \(1500\)–\(1700\) ккал в сутки. Из этого количества энергии на собственные нужды организма уходит \(15\)–\(35\) %, а остальное затрачивается на выработку тепла и поддержание температуры тела.

www.yaklass.ru

Обмен веществ в организме - схема, таблица — Схемо.РФ

xn--e1aogju.xn--p1ai

Обмен веществ (метаболизм) - схема, таблица — Схемо.РФ

xn--e1aogju.xn--p1ai

Обмен веществ (метаболизм) - схема, таблица — Схемо.РФ

xn--e1aogju.xn--p1ai

Обмен веществ и энергии - схема, таблица — Схемо.РФ

xn--e1aogju.xn--p1ai

6. Регуляция обмена веществ. Нарушения обмена веществ

Регуляция обмена веществ

Обменные процессы в организме происходят под действием ферментов и регулируются нервно-гуморальным путём.

Почти все железы внутренней секреции принимают участие в регуляции обмена веществ:

 

Нарушения регуляции обмена веществ вызывают различные заболевания.

Заболевания, связанные с нарушением обмена веществ

Каждый человек имеет оптимальный вес, который определяется его ростом, полом и возрастом. Однако неправильное питание может стать причиной изменения веса человека. Человек худеет или поправляется в зависимости от того, какой процесс обмена (пластический или энергетический) преобладает.

Одним из самых распространённых симптомов нарушения обмена веществ и одновременно заболеванием является ожирение. Ожирение делится на степени (по количеству жировой ткани) и на типы (в зависимости от причин, приведших к его развитию).

 

 

Ожирение ведёт к повышенному риску возникновения сахарного диабета (заболевания, связанного с нарушением углеводного обмена и дисфункцией поджелудочной железы), гипертонической болезни и других заболеваний (метаболический синдром), связанных с наличием избыточного веса.

 

 

Особенную опасность представляет собой ожирение, затрагивающее внутренние органы. Например, ожирение печени (признаки ожирения печени могут напоминать симптомы отравления).

 

 

Дистрофия — заболевание, связанное с недостаточным поступлением в организм питательных веществ (особенно белка). Когда использованы все запасы органических веществ, начинают разрушаться собственные белки организма.

 

 

Анорексия — серьёзное психическое расстройство (желание худеть), и которое некоторые психиатры считают проявлением одной из форм шизофрении. Обычно эта болезнь наблюдается у молодых людей в возрасте от \(12\) до \(30\) лет. Чаще болезнь поражает девочек, чем мальчиков. Больные худеют настолько, что происходят нарушения всех систем органов.

 

 

Ещё одно заболевание — булимия — характеризуется приступами обжорства, во время которых человек съедает во много раз больше еды, чем обычно, а затем вызывает рвоту, чтобы воспрепятствовать набору лишнего веса. Булимия может привести к серьёзным осложнениям: от неврастении до острой сердечной недостаточности.

 

Нарушения обмена веществ в организме могут стать причиной отложения солей и образования камней в почках и мочевыводящих путях.

Источники:

Любимова З. В., Маринова К. В. Биология. Человек и его здоровье. 8 класс. — М.: Владос.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.slideshare.net/AlexSarS/ss-39405033

http://med36.com/ill/1145

http://900igr.net/prezentatsii/biologija/Obmen-veschestv-v-organizme/012-Funktsii-belkov-zhirov-i-uglevodov.html

www.yaklass.ru

Конспект "Обмен веществ" - УчительPRO

«Обмен веществ»



Обмен веществ — совокупность реакций пластического и энергетического обменов.

Пластический и энергетический обмен, их взаимосвязь.

Пластический обмен {ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых. Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ.

 Этапы обмена веществ:



Водно-минеральный обмен в организме.

Суточная потребность организма в воде в среднем составляет 2-2,5 л. Вода поступает в организм при питье (около 1 л), с пищей (около 1 л), небольшое количество (300— 350 мл) ее образуется в результате окисления органических веществ. Вода всасывается в кишечнике (тонком и толстом), ротовой полости и желудке. Из организма вода выводится с мочой (1,2-1,5 л), с потом (500-700 мл), выдыхаемым воздухом (350-800 мл), калом (100-150 мл).

Минеральные соли в организме могут быть в твердом состоянии в виде кристаллов — Са3(Р04)2 и СаСО3 в костной ткани; в диссоциированном состоянии в виде катионов и анионов. Анионы создают фосфатную буферную систему, поддерживающую внутри клеток слабокислую среду (pH 6,9), и бикарбонатную буферную систему, поддерживающую слабощелочную реакцию внеклеточной среды (pH 7,4). Общее количество минеральных солей около 4,5%. Потребности организма в них удовлетворяются продуктами питания. Железа много в яблоках, йода — в морской капусте, кальция — в молочных продуктах. Человеку необходимо постоянное поступление натрия и хлора (до 10 г поваренной соли в сутки). Всасывание солей происходит вместе с водой в толстом кишечнике. Попавшие в кровь минеральные соли доставляются клеткам. Излишки минеральных солей выводятся с мочой, потом и калом.

Обмен белков.

Суточная потребность организма в белках составляет 72-92 г. Источником белков являются преимущественно продукты животного происхождения. По содержанию аминокислоты белки делятся на полноценные (белки молока, мяса, рыбы и др.) и неполноценные, которые не содержат ни одной из незаменимых аминокислот. Особенно важны десять незаменимых аминокислот, не синтезируемых в организме (лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин, гистидин).

Протеолитические ферменты расщепляют белки до полипептидов и аминокислот. Аминокислоты всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по организму. В клетках из них образуются белки, свойственные организму. При избытке белки преобразуются в углеводы и жиры. Часть аминокислот, не использованных в синтезе белка, окисляется с освобождением энергии (17,6 кДж на 1 г вещества) и образованием воды, диоксида углерода, аммиака и др. Аммиак в печени превращается в мочевину. Продукты диссимиляции белков выводятся с мочой, потом и частично с выдыхаемым воздухом.

Обмен жиров.

Суточная потребность организма в жирах составляет 81-110 г. Животные жиры поступают в организм в виде сливочного масла, сыра, сметаны, свиного сала; растительные — в виде растительного масла. Липолитические ферменты расщепляют жиры до глицерола и жирных кислот. Жиры всасываются в лимфу, затем поступают в кровь и разносятся по всем клеткам. Часть жира, попавшего в клетки, является строительным материалом. Большая же его часть откладывается в подкожной клетчатке. При окислении 1 г жира выделяется 38,9 кДж энергии. Жиры могут синтезироваться из углеводов и белков. Конечные продукты окисления жиров — диоксид углерода и вода, удаляются с выдыхаемым воздухом, мочой, потом.

Обмен углеводов.

В сутки человек должен получать 358—484 г углеводов. Основной их источник — продукты растительного происхождения (картофель, хлеб). Углеводы в организме могут образовываться из белков и жиров. Амилолитические ферменты расщепляют углеводы до дисахаридов и моносахаридов. Моносахариды всасываются в кровеносные капилляры ворсинок кишечника и разносятся кровью по организму. Избыток глюкозы превращается в печени в гликоген. При чрезмерном поступлении углеводов они превращаются в жиры. В клетках глюкоза окисляется до диоксида углерода и воды, которые удаляются с выдыхаемым воздухом, мочой, потом, при этом выделяется энергия (17,6 кДж на 1 г глюкозы).


Это конспект по биологии в 8 классе по теме «Обмен веществ». Выберите дальнейшие действия:

uchitel.pro

Конспект "Обмен веществ и превращения энергии"

«Обмен веществ и превращения энергии. Ферменты»

Раздел ЕГЭ: 2.5.  Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.



Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций. Обмен веществ — совокупность химических превращений, направленных на сохранение и самовоспроизведение биологических систем. Он включает в себя:

Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластического и энергетического обменов.


Энергетический обмен и пластический обмен

Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примерами реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.

Энергетический обмен (катаболизм, диссимиляция) — это совокупность реакций расщепления сложных веществ до более простых. В результате энергетического обмена выделяется энергия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластического обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в процессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.

Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания.

Схема общего обмена веществ


Ферменты

Протекание химических реакций в живых организмах обеспечивается благодаря биологическим катализаторам белковой природы — ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а иногда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечного продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая — кофактор (кофермент). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.

Ферменты отличаются от катализаторов небелковой природы высокой специфичностью действия, а также возможностью регуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существенно отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура 37° С, а давление должно быть близким к атмосферному.

Механизм действия ферментов заключается в снижении энергии активации веществ (субстратов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных комплексов.


Это конспект для 10-11 классов по теме «Обмен веществ и превращения энергии. Ферменты».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.5:

uchitel.pro

Болезни и изменения клеточного метаболизма

Нейродегенеративные и онкологические болезни — самые распространенные возрастные патологии после болезней сердца и сосудов. Как показывают исследования, эти патологии тесным образом связаны с энергетическим обменом и митохондриальной дисфункцией. Детальное и масштабное изучение изменений клеточного метаболизма при развитии этих патологий способствует разработке более совершенных диагностических инструментов, позволяющих обнаруживать заболевание на самой ранней его стадии.

Спецпроект о клеточном энергетическом метаболизме, работе митохондрий и АТФ, а также о заболеваниях, связанных с нарушениями функций клеточных «батареек».


Спонсор спецпроекта — «БиоХимМак» — поставщик научного и медицинского оборудования в лаборатории России и стран СНГ.

Наверное, у каждого, кто начинает знакомиться с удивительной организацией наших клеток, возникает чувство восхищения невероятной сложностью внутриклеточного мира. Каждую секунду в миллиардах наших клеток протекают сложные и строго скоординированные процессы. И одним из таких очень важных процессов является производство в митохондриях главной энергетической молекулы — аденозинтрифосфата, или АТФ. Сегодня уже хорошо известно, что работа митохондрий очень тесно связана со здоровьем и продолжительностью жизни [1]. Митохондрии производят энергию для поддержания жизни, но при этом они же служат основными источниками активных форм кислорода, избыток которых для клеток губителен.

Энергетический обмен

Любой живой организм находится в постоянной связи с окружающей средой, непрерывно обмениваясь с ней веществом. В этом процессе можно выделить три этапа:

  1. поступление веществ;
  2. метаболизм;
  3. выделение конечных продуктов.

Внутриклеточный метаболизм, в свою очередь, включает в себя два типа реакций: катаболизм и анаболизм.

Катаболизм — это процесс расщепления и окисления органических молекул, приводящий к образованию тепла и энергетических молекул, АТФ. Именно за счет постоянного производства—расщепления последних съеденные нами калории направляются «по адресу»: гидролиз двух высокоэнергетических (макроэргических) связей в молекулах АТФ обеспечивает энергией всевозможные синтетические и транспортные процессы в клетках.

На первом этапе катаболизма под воздействием пищеварительных ферментов сложные органические соединения (белки, полисахариды, жиры) распадаются на более простые — аминокислоты, моносахариды, жирные кислоты и глицерин, — которые клетка использует для реакций анаболизма (пластического обмена) и получения энергии. Аминокислоты идут на синтез белков. Жирные кислоты выполняют энергетическую функцию, входят в состав клеточных мембран и служат субстратом для синтеза эйкозаноидов

На втором этапе происходит гликолиз — расщепление молекул глюкозы (рис. 1) до пировиноградной кислоты (ПВК). Дальнейший ход реакций зависит от присутствия или отсутствия кислорода в клетке. Если кислорода нет (анаэробный процесс), то ПВК у микроорганизмов и растений будет превращаться в этанол, а в организме животных — в молочную кислоту [2]. Каждый, кто подвергал себя тяжелым физическим нагрузкам, мог почувствовать конечный результат анаэробного метаболизма в виде боли и скованности в мышцах из-за скопившейся в них молочной кислоты.

Рисунок 1. Реакции гликолиза. На 10 этапах гликолиза (пяти подготовительных и пяти этапах синтеза АТФ) из шестиуглеродной молекулы глюкозы образуются две трехуглеродные молекулы пировиноградной кислоты. Полученная от расщепления глюкозы энергия запасается в «энергетической валюте» клетки — двух молекулах АТФ и двух молекулах НАДФ.

Если же кислород в клетке есть, ПВК будет расщепляться на углекислый газ и воду и тоже высвобождать заключенную в углеводной молекуле энергию. Этот процесс называется аэробным клеточным дыханием и проходит в специальных органеллах — митохондриях. Окисление в митохондриях дает гораздо больше энергии, чем гликолиз.

Митохондрии и производство АТФ

Рисунок 2. Митохондрия под электронным микроскопом.

Митохондрии — настоящее биологическое чудо, сотворенное эволюцией. Несмотря на очень маленький размер (в одной клетке может быть более 1000 митохондрий), эти органеллы поражают чрезвычайно сложной организацией (рис. 2). Они представляют собой вытянутые «пузырьки», окруженные двумя мембранами. Считается, что митохондрии сформировались в результате поглощения археями-фагоцитами пурпурных фотосинтезирующих бактерий, которые, приспосабливаясь к избытку кислорода, освоили аэробное дыхание [3], [4]. Мембраны митохондрий состоят из липидов и гидрофобных, нерастворимых в воде белков. (Здесь мы так подробно описываем строение митохондрий не случайно, а для того чтобы потом было понятно, как их нормальная работа и дисфункция влияют на здоровье.)

Строение мембран очень важно для процесса дыхания. Внешняя мембрана митохондрий — гладкая, а внутренняя — многократно складчатая. Эти складки (или кристы) позволяют увеличить рабочую площадь мембраны, что необходимо для размещения там всего комплекса белков, осуществляющих дыхание. Вначале окисляются углеродные атомы углеводов, жирных кислот и аминокислот до СО2 (гликолиз, цикл Кребса и β-окисление жирных кислот), а полученные таким образом электроны используются для образования НАДФ. Далее НАДФ окисляется молекулярным кислородом с образованием воды. НАДФ-оксидазная реакция сопровождается выделением очень большого количества свободной энергии (около 1,1 эВ при переносе одного электрона с НАДФ на кислород), которая может запасаться дыхательной цепью в виде трансмембранной разности электрохимических потенциалов ионов H+ (протонов).

Работа же дыхательных белков-ферментов похожа на работу насосов: передавая электроны друг другу, они перекачивают протоны в межмембранное пространство (см. видео 1). В результате внутренняя мембрана митохондрии заряжается подобно конденсатору. Создаются потенциалы: электрический (положительные заряды — снаружи митохондриальной мембраны, отрицательные — внутри органеллы) и химический (возникает разница концентраций протонов: внутри митохондрии их меньше, снаружи — больше). Известно, что электрический потенциал на мембране митохондрий, которая служит хорошим диэлектриком, достигает 200 мВ при толщине мембраны всего 10 нм [5]. Для сравнения: потенциал действия на мембранах нервных клеток при передаче сигнала достигает всего 30 мВ.

Видео 1. Как работает митохондрия

Накопившись в межмембранном пространстве, протоны, подобно электрическому току, устремляются назад, в митохондрию — туда, где их концентрация ниже. Однако они могут проходить только по специальным каналам АТФ-синтазы, встроенной во внутреннюю мембрану: протонный канал (ротор) этого фермента закреплен в мембране, а каталитический комплекс торчит внутрь митохондрии, в матрикс (рис. 3). Поток протонов раскручивает ротор, как река водяную мельницу. В результате ротор вращается с невероятной скоростью — 300 оборотов в секунду (см. видео 2)! И именно это вращение приводит к образованию высокоэнергетической молекулы — АТФ [6]. Подсчитано, что в сутки в организме взрослого человека синтезируется и расходуется около 40 кг АТФ, при этом жизнь каждой молекулы очень коротка.

Рисунок 3. Схема дыхательной цепи митохондрий.

Видео 2. Работа АТФ-синтазы в мембране митохондрии

Всё вышесказанное имеет самое непосредственное отношение к старению. Дело в том, что в процессе дыхания ферменты работают не совсем «чисто», и в результате образуются побочные продукты — активные формы кислорода (АФК). Пока человек молод и здоров, образующиеся в митохондриях АФК не представляют для него ощутимой угрозы, так как легко нейтрализуются организмом. Но когда человек стареет, ведет нездоровый образ жизни или имеет генетическую предрасположенность к определенным болезням, его защитные системы дают сбой, рушась одна за другой.

Жирные кислоты и дисфункция митохондрий

То, что старение и возрастные патологии сопровождаются дисфункцией митохондрий, которые начинают производить меньше АТФ и хуже обновляться, уже ни у кого не вызывает сомнения. Выяснилось также, что дисфункция митохондрий и старение тесным образом связаны с повышением уровня свободных жирных кислот в крови [7], чему сильно способствуют малоподвижность и нерациональное питание. Жирные кислоты, попадая в клетку, способны напрямую снижать синтез АТФ, разобщая окисление и фосфорилирование. Этот связанный с терморегуляцией организма феномен был открыт еще шесть десятилетий назад академиком Скулачевым и его коллегами [8]. Снижение синтеза АТФ, в свою очередь, запускает сразу несколько негативных цепных реакций, связанных с возрастными болезнями и старением в целом.

И вот что происходит. Повышение уровня свободных жирных кислот в организме приводит к резистентности к инсулину: инсулинзависимые клетки перестанут реагировать на этот гормон. В результате нарушается усвоение глюкозы и жирных кислот, ухудшается окисление последних. Дело в том, что характерный для состояния инсулинорезистентности высокий уровень инсулина активирует целый каскад реакций, который блокирует работу фермента карнитинпальмитоилтрансферазы I (СРT1), участвующего в переносе жирных кислот внутрь митохондрий [9]. Из-за этого ухудшается синтез АТФ, а жирные кислоты накапливаются в цитоплазме клеток, вызывая эффект липотоксичности. Кроме резистентности к инсулину, избыток жирных кислот в организме вызывает резистентность к еще одному «пищевому» гормону — лептину. А из-за этого страдает функция одного из главных участников биогенеза (обновления) митохондрий — коактиватора рецептора гамма, активируемого пролифераторами пероксисом (PGC-1α). В итоге митохондрии производят меньше АТФ, стареют, погибают и провоцируют гибель клеток путем апоптоза [10].

Ну и наконец, избыток жирных кислот вызывает стресс эндоплазматического ретикулума (ЭПР) — внутриклеточного органоида, участвующего в синтезе белков и множестве других процессов. При стрессе ЭПР в цитоплазму высвобождаются ионы кальция, способные вызывать дисфункцию и гибель митохондрий [11]. Ионы кальция могут накапливаться в клетке и по другой причине — из-за ухудшения работы ионных насосов, откачивающих кальций из клетки. А причиной этому служит нарушение работы митохондрий, сопровождающееся снижением синтеза АТФ, без которого отказываются работать ионные насосы. В итоге формируется порочный круг: снижение выработки АТФ приводит к дисфункции митохондрий, что еще больше снижает выработку АТФ, и т.д.

Жирные кислоты, церамиды и повреждения нейронов

Как выяснилось, избыток жирных кислот и дисфункция митохондрий напрямую связаны с возникновением возрастных нейродегенеративных патологий. Надо сказать, что клетки нервной системы — самые уязвимые для возрастного окислительного стресса и снижения синтеза АТФ. Такая исключительная чувствительность нейронов к дефициту энергии и повышению генерации АФК объясняется несколькими причинами.

Во-первых, нервная ткань в силу своей физиологии нуждается в наибольшем потреблении кислорода. Вследствие этого в митохондриях нейронов происходит интенсивный окислительный метаболизм, который и становится основной причиной повышенной генерации АФК.

Во-вторых, из-за того, что мембраны нейронов содержат много ненасыщенных жирных кислот, они легко подвергаются перекисному окислению липидов. Так как активность антиоксидантных систем в ткани головного мозга ниже, чем в других органах, а с возрастом сокращается и количество некоторых ферментов-антиоксидантов, становится понятным, почему клетки нервной системы наиболее чувствительны к окислительным повреждениям [12].

В настоящее время известно несколько факторов, повреждающих нейроны. Среди них — белки, образующие внутри- и внеклеточные агрегаты (β-амилоидный белок и другие), а также церамиды и липофусцин. На их количество влияет прежде всего избыток жирных кислот в организме. Отягчающим обстоятельством в этом случае выступает чрезмерное содержание насыщенных кислот (пальмитиновой и стеариновой) в пищевом рационе. Всё это вместе служит мощным стимулом развития разнообразных нейродегенеративных заболеваний, таких как болезнь Альцгеймера [13], [14].

Но каким же образом пальмитиновая кислота может способствовать нейродегенерации? Установлено, что из-за избытка этой кислоты накапливаются церамиды, которые участвуют в регуляции терминальной дифференцировки, пролиферации и апоптоза нейронов. Посредством нескольких химических реакций они воздействуют на регуляторы клеточного цикла, повышая концентрацию ингибиторов киназ p21/SDI1 и p27/KIP1. Таким образом церамиды останавливают клеточный цикл, что, в свою очередь, активирует главного «стража генома» — белок р53 — и «насылает» на клетку апоптоз [15]. Кроме этого, при деградации церамида образуется вещество сфингозин, обладающее цитотоксическим действием и способное вызывать как апоптоз, так и некроз клеток. Но и это еще не всё. Обнаружено, что накопление насыщенных жирных кислот (пальмитиновой и стеариновой) стимулирует специальные клетки головного мозга (астроглию) на эндогенный (внутренний) синтез церамидов. Эти произведенные церамиды запускают цепную реакцию следующего вида: церамиды → повышение секреции провоспалительных цитокинов и оксида азота → увеличение производства АФК и окислительный стресс → активация стресс-регулируемых киназ (CDK5 и GSK-3) в нейронах → образование β-амилоидного белка и гиперфосфорилирование τ-белка [16].

Нейродегенеративные патологии и дисфункция митохондрий

Сегодня важнейшими и самыми распространенными нейродегенеративными патологиями считают болезни Альцгеймера, Паркинсона, Хантингтона, а также боковой амиотрофический склероз. Их возникновение связывают со структурными изменениями различных белков, приводящими к образованию внутриклеточных агрегатов. К таким белкам относятся:

Болезнь Альцгеймера (БА) — тяжелое нейродегенеративное заболевание, для которого характерны синаптическая дисфункция и гибель нейронов, что сопровождается снижением когнитивных способностей: ухудшением памяти и мышления, постепенной потерей социальных и моторных навыков [17]. В зоне риска развития болезни находятся в основном пожилые люди. Лишь 1–2% людей в возрасте до 65 лет страдают БА. Согласно одной из гипотез развития БА — амилоидной, — болезнь возникает из-за накопления в головном мозге агрегатов β-амилоида. Этот пептид состоит из 39–43 аминокислотных остатков и является фрагментом крупного трансмембранного белка под названием предшественник бета-амилоида (amyloid precursor protein, APP). Находясь в избытке, молекулы β-амилоида начинают «склеиваться» и образовывать нерастворимые бляшки (рис. 4). Именно в таком состоянии белок нарушает работу нервных клеток и вызывает симптомы БА. У страдающих БА в пораженных участках мозга находят большое количество амилоидных бляшек и нейрофибриллярных клубков [18].

Рисунок 4. Образование амилоидной бляшки у генно-инженерных мышей (показано длинной стрелкой). На 6-й день уже видна дистрофия нейрона (короткая стрелка). Синим цветом обозначены отложения амилоида, зеленым — нейроны. Длина масштабной линейки — 20 мкм; снимки сделаны с помощью мультифотонного микроскопа.

Однако амилоидная гипотеза — не единственная, объясняющая возникновение БА. В 1993 году Аллен Роузес, профессор Университета Дьюка, предложил еще одну гипотезу возникновения БА — генетическую, связанную с геном APOE, кодирующим аполипопротеин Е (ApoE). Выяснилось, что наследование одного из вариантов гена APOE — APOE4 — в несколько раз повышает шансы заболеть БА. Всё больше исследователей склоняются к мысли, что β-амилоид излишне «демонизирован» и не является первопричиной развития БА. Неудавшаяся терапия, направленная на очистку клеток от β-амилоида, подтверждает, что с этой болезнью не всё до конца ясно [19].

Болезнь Паркинсона (БП) — еще одно тяжелое и довольно распространенное возрастное нейродегенеративное заболевание. У больных БП в нейронах черной субстанции накапливается α-синуклеин, который образует особые гранулы — тельца Леви. Надо сказать, что существует так называемая деменция с тельцами Леви, для которой характерно скопление многочисленных телец Леви в кортикальных и субкортикальных нейронах и развитие прогрессирующего когнитивного расстройства уже в первый год заболевания. Но пока не совсем ясно, считать ли эту деменцию формой БП или же правильнее ее рассматривать как отдельное заболевание. В случае БП скопления телец Леви приводят к дисфункции нейронов и их гибели, при этом характерно поражение областей мозга из состава так называемого нигростриарного дофаминового пути. Этот путь регулирует двигательную активность, снижая напряжение в мышцах. Вот почему, когда гибнут дофаминовые нейроны, у больных возникают соответствующие симптомы: нарастающее повышение мышечного тонуса и дрожание рук. Кроме нарушения моторных функций для БП характерны и другие симптомы, связанные с нарушением сна, депрессией, тревогой, ухудшением зрения и замедлением мышления [20].

Болезнь Хантингтона (БХ) — тоже не слишком редкое нейродегенеративное заболевание [21]. Как и в случае болезни Альцгеймера, для патогенеза БХ характерно образование токсичных белковых агрегатов с участием мутантных форм белков, которые синтезируются в нервной ткани. Но если к основному «виновнику» БА, β-амилоиду, у ученых есть вопросы, в случае с БХ сомнений гораздо меньше. Установлено, что именно генетические особенности — полиморфизмы определенных участков ДНК — приводят к появлению патологических форм белка хантингтина. Такой хантингтин способен к ассоциации с другими белками нервной ткани, в результате чего образуются нерастворимые токсичные агрегаты, повреждающие кору и полосатое тело головного мозга. Для БХ типичны всплески непроизвольной двигательной активности, эмоциональные расстройства и потеря памяти. В то же время нормальная физиологическая функция белка хантингтина в организме остается под вопросом. Предполагают, что он играет какую-то роль в эмбриогенезе [22].

Все три упомянутые патологии самым тесным образом связаны с дисфункцией митохондрий. Прежде всего, надо отметить, что ее развитие под действием дефектных белков, специфичных для нейропатологий, было установлено несколькими способами: in vitro (на клеточных линиях и внеклеточных системах) и in vivo (на трансгенных животных). Обнаружили и обратную связь: оказалось, что дисфункция митохондрий может стимулировать появление дефектных белков. Так, нарушение активности дыхательного комплекса I ведет к накоплению в нервных клетках гиперфосфорилированного τ-белка и α-синуклеина [23].

Со скоплением дефектных белков связали и уже упоминавшийся стресс эндоплазматического ретикулума. Один из таких белков, α-синуклеин, может снижать активность протеасом, что заканчивается стрессом ЭПР, увеличением производства АФК и инициацией апоптозных процессов. Это происходит потому, что из митохондрий высвобождается апоптозный фактор, цитохром С, который активирует «клеточных убийц» — каспазу-9 и каспазу-3 [24]. Как полагают, на начальных этапах нейродегенерации при БА накопление β-амилоида и гиперфосфорилирование τ-белка могут быть физиологическими механизмами защиты клетки от окислительного стресса, вызванного прогрессирующей митохондриальной дисфункцией. Однако при избыточном накоплении этих белков в клетке происходит сбой в работе митохондрий. Так, у пациентов с БА обнаружили, что β-амилоид накапливается в митохондриях и нарушает реакции гликолиза и цикла Кребса, активизирует продукцию АФК. Более того, β-амилоид способен напрямую подавлять синтез АТФ. Это возможно из-за структурного сходства белка с естественным ингибитором F(1)-субъединицы АТФ-синтазы митохондрий. Также β-амилоид может взаимодействовать с митохондриальной мембраной, формируя стабильные комплексы с двумя транслоказами, TOM40 и TIM23. Такие комплексы подавляют импорт в митохондрии белков, кодируемых ядерным геномом, — субъединиц IV и Vb цитохромоксидазы. На что органелла откликается увеличением производства агрессивного пероксида водорода.

Но и это еще не всё: белок — предшественник β-амилоида может формировать поры в мембранах митохондрий и других органелл, что нарушает ионный баланс в клетке и запускает ее апоптоз [25]. Также этот белок повышает активность фосфолипазы D, в результате изменяя фосфолипидный состав митохондриальных мембран, увеличивая концентрацию фосфатидилхолина, фосфатидилэтаноламина и фосфатидной кислоты и нарушая работу мембран. Известно, что β-амилоид может связывать гем, а это ведет к дефициту гема в клетке, из-за чего нарушается работа гем-содержащего IV комплекса электронтранспортной цепи митохондрий [26].

Но не только β-амилоид способен негативно влиять на митохондрии. В экспериментах с трансгенными грызунами, экспрессирующими ген хантингтина человека, обнаружили агрегацию этого белка в митохондриях с последующим развитием их дисфункции. Другой «зловредный» белок, α-синуклеин, накапливаясь во внутренней митохондриальной мембране, способен снижать активность дыхательного комплекса I. Как следствие, митохондрии увеличивают продукцию АФК [27]. Также обнаружено, что α-синуклеин, взаимодействуя с митохондриями, может стимулировать высвобождение из них цитохрома С, а значит, инициировать апоптоз.

В целом, можно сказать, что запуск апоптоза — характерный эффект белков, вызывающих нейродегенерацию. Они могут прямо или косвенно воздействовать на регуляторные белки, связанные с апоптозом: p53, Akt, Bad, Bax, Bcl-x(L) и кальцинейрин [28].

Также описано, что сверхсинтез белка — предшественника β-амилоида приводит к повреждению системы слияния—деления митохондрий. Негативно влияют на эту же систему и на утилизацию дефектных митохондрий аутофагосомами мутации гена паркина (PARK2), обнаруженные у больных БП. Дефектные формы τ-белка и хантингтина тоже мешают нормальной работе митохондрий, ухудшая тем самым энергообеспечение отростков нервных клеток и синаптическую передачу, вызывая дегенерацию синапсов [29].

Таким образом, белки, участвующие в развитии нейродегенеративных патологий, могут способствовать митохондриальной дисфункции посредством целого ряда механизмов. В свою очередь, уже возникшая дисфункция может усугублять патологические процессы, стимулируя появление дефектных белков и замыкая тем самым порочный круг развития болезни.

Эффект Варбурга

И напоследок стόит коснуться еще одного момента, связанного с патологиями и изменением клеточного метаболизма. В 1926 году немецкий биохимик Отто Варбург сравнил скорости образования молочной кислоты (лактата) в нормальных и опухолевых клетках. Оказалось, что опухолевые клетки потребляют очень много глюкозы, образуя при этом лактат. И делают это они гораздо быстрее, чем нормальные клетки: злокачественная ткань в эксперименте производила молочную кислоту в восемь раз активнее, чем это происходит в мышце, выполняющей физическую работу. Варбург установил, что раковые клетки используют гликолиз для получения энергии вне зависимости от доступности кислорода (рис. 5) [30]. В честь первооткрывателя этот феномен назвали эффектом Варбурга [2].

Рисунок 5. Энергообеспечение нормальной и раковой клеток. Синим квадратом обозначена поступающая в клетку глюкоза.

Обнаружив этот эффект, Варбург логично предположил, что его можно объяснить дисфункцией митохондрий в опухолевых клетках и нарушением окислительного фосфорилирования. Сегодня эта точка зрения ставится под сомнение, так как и в перерожденной ткани обнаруживают большое количество нормально работающих митохондрий. Около половины всей энергии опухолевые клетки получают из молекул АТФ, произведенных в митохондриях [31]. Эффект Варбурга проявляется в клетках уже в самом начале их трансформации в опухолевые. И это дает возможность проводить раннюю диагностику неопластических процессов: как только клетка начала расходовать глюкозу в повышенных масштабах, пора бить тревогу. Обнаружить эти процессы можно с помощью позитронно-эмиссионной томографии с использованием фторированного аналога глюкозы, 2-(18F)-2-дезокси-D-глюкозы.

Но зачем раковые клетки переходят на анаэробный гликолиз? Сейчас считается, что так они получают преимущество, заранее подготавливаясь к «тяжелым временам» — развитию гипоксии. А кроме этого, такой способ энергообеспечения дает клеткам возможность использовать промежуточные продукты гликолиза для анаболических реакций, усиления своей антиоксидантной защиты и отражения иммунной атаки организма [32].

Таким образом, изменения в метаболизме глюкозы и появление дефектных белков и внутриклеточных агрегатов могут говорить о начале развития патологии. Своевременное выявление подобных внутриклеточных процессов может сыграть решающую роль в предупреждении и терапии самых распространенных нейродегенеративных и онкологических заболеваний. А для того чтобы это было возможным, необходимо изучать фундаментальные аспекты патологий, связанные с работой митохондрий и энергетическим обменом. Сегодня уже разработаны системы, позволяющие заглянуть «вглубь» этих заболеваний и даже провести диагностику на самой ранней стадии их развития. Подробнее об этих системах, принципах их действия и исследованиях с их использованием расскажут следующие статьи спецпроекта.

Компания более 25 лет успешно занимается поставками научного и медицинского оборудования российских и зарубежных производителей: Beckman Coulter, Bio-Rad, Molecular Devices, Thermo Fisher Scientific, UVP, Seahorse Bioscience (part of Agilent), Immucor, MRC Holland и др. «БиоХимМак» обслуживает более 5000 научных и медико-диагностических лабораторий в России и странах СНГ.

Отдел молекулярной диагностики (Life Science MDx)

Молекулярная онкология, преимплантационный скрининг, цитогенетика, пренатальные и постнатальные исследования, диагностика инфекций, наследственных, мультифакторных заболеваний, детекция генномодифицированных источников и бактериального загрязнения в продуктах питания, криминалистические приложения — это лишь неполный перечень областей, которые входят в сферу интересов отдела.

Основные направления деятельности отдела:

Отдел работает как с инновационной продукцией (MLPA, PGS и NGS исследования, клеточная биоэнергетика Agilent Seahorse Bioscience), так и с зарекомендовавшими себя мировыми брендами — Beckman Coulter, Bio-Rad, Molecular Devices, UVP, Thermo Fisher Scientific.

Материал предоставлен партнёром — компанией «БиоХимМак»

  1. Вода студеная, вареная и кипящее молоко, или Еще раз об омоложении;
  2. Страшней клешней на свете нет...;
  3. Как появились митохондрии (рассказ, похожий на сказку);
  4. От сложного к простому: трудности симбиогенеза;
  5. Ржешевский А.В. (2016). Нанороботы внутри нас: как работают клетки. Популярная механика. 1, 31–34;
  6. Романовский Ю.М. и Тихонов А.Н. (2010). Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза — вращающийся молекулярный мотор. Успехи физических наук. 9, 931–956;
  7. Терёшина Е.В. (2007). Роль жирных кислот в развитии возрастного окислительного стресса. Успехи геронтологии. 20, 59–65;
  8. Скулачев В.П. (1998). Альтернативные функции клеточного дыхания. Соросовский образовательный журнал. 8, 2–7;
  9. Ржешевский А.В. (2014). Снижение синтеза АТР и дисфункция биологических мембран. Биохимия. 10, 1300–1315;
  10. Roger H. Unger. (2003). Minireview: Weapons of Lean Body Mass Destruction: The Role of Ectopic Lipids in the Metabolic Syndrome. Endocrinology. 144, 5159-5165;
  11. C. Xu. (2005). Endoplasmic reticulum stress: cell life and death decisions. Journal of Clinical Investigation. 115, 2656-2664;
  12. Иллариошкин С.Н. (2012). Нарушения клеточной энергетики при заболеваниях нервной системы. Нервные болезни. 1, 34–38;
  13. R. A Whitmer. (2005). Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 330, 1360-0;
  14. β-амилоид: невидимый враг или тайный защитник? Запутанная тропка болезни Альцгеймера;
  15. L. M. Obeid. (2003). Ceramide, Stress, and a "LAG" in Aging. Science of Aging Knowledge Environment. 2003, 27pe-27;
  16. Бабенко Н.А., Семенова Я.А., Харченко В.С. (2009). Влияние обогащенной жирами диеты на содержание сфинголипидов и когнитивные функции у старых крыс. Нейрофизиология. 41, 309–315;
  17. На руинах памяти: настоящее и будущее болезни Альцгеймера;
  18. Смерть после жизни, болезнь Альцгеймера и почему мы хотим перемен;
  19. Болезнь Альцгеймера: ген, от которого я без ума;
  20. C. A. Davie. (2008). A review of Parkinson's disease. British Medical Bulletin. 86, 109-127;
  21. Как спасти Тринадцатую? (Перспективы лечения болезни Хантингтона);
  22. Francis O Walker. (2007). Huntington's disease. The Lancet. 369, 218-228;
  23. Gunter U. Hoglinger, Annie Lannuzel, Myriam Escobar Khondiker, Patrick P. Michel, Charles Duyckaerts, et. al.. (2005). The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 95, 930-939;
  24. W. W. Smith. (2005). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics. 14, 3801-3811;
  25. Судаков Н.П., Бывальцев В.А., Никифоров С.Б., Сороковиков В.А., Клименков И.В., Константинов Ю.М. (2010). Дисфункция митохондрий при нейродегенеративных заболеваниях. Журнал неврологии и психиатрии. 9, 87–91;
  26. H. Atamna, K. Boyle. (2006). Amyloid-beta peptide binds with heme to form a peroxidase: Relationship to the cytopathologies of Alzheimer's disease. Proceedings of the National Academy of Sciences. 103, 3381-3386;
  27. L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, H. K. Anandatheerthavarada. (2008). Mitochondrial Import and Accumulation of  -Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry. 283, 9089-9100;
  28. Sandra M. Cardoso, Catarina R. Oliveira. (2005). The role of calcineurin in amyloid-β-peptides-mediated cell death. Brain Research. 1050, 1-7;
  29. Francis C. Chee, Amritpal Mudher, Matthew F. Cuttle, Tracey A. Newman, Daniel MacKay, et. al.. (2005). Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiology of Disease. 20, 918-928;
  30. Robert A. Gatenby, Robert J. Gillies. (2004). Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 4, 891-899;
  31. Peter L. Pedersen. (2007). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 39, 211-222;
  32. Куликов В.А. и Беляева Л.Е. (2013). Метаболическое перепрограммирование раковых клеток. Вестник Витебского государственного медицинского университета. 2, 6–18;
  33. Melanie Meyer-Luehmann, Tara L. Spires-Jones, Claudia Prada, Monica Garcia-Alloza, Alix de Calignon, et. al.. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature. 451, 720-724.

biomolecula.ru

Как ускорить обмен веществ в организме и похудеть

У многих людей, которые хотят похудеть, избавиться от лишнего веса, улучшить свое здоровье, часто возникает вопрос, как ускорить обмен веществ (метаболизм) в организме, потому что именно он является причиной накопления жира, токсинов в организме.

Обмен веществ или метаболизм, с научной точки зрения, это все химические реакции, которые позволяют, расти, развиваться, взаимодействовать с окружающей средой, то есть, реакции, которые поддерживают жизнеобеспечение организма. Другими словами, обмен веществ, это скорость, или интенсивность, образования энергии в организме, которая образуется в результате потребления продуктов питания (белков, жиров и углеводов). Соответственно, чем выше скорость образования энергии из съеденной еды, тем выше метаболизм у человека.

Стадии метаболизма

Катаболизм – распад сложных органических веществ, до более простых, для того, чтобы поддержать жизнеобеспечение организма (обычно выделяется энергия в виде тепла и АТФ). Именно катаболизм, отвечает за разрушение мышц.

Анаболизм – синтез сложных веществ из более простых, в результате чего, наблюдается обновление ткани, образование новых клеток и веществ (нуклеиновых и жирных кислот, сахаров, аминокислот, АТФ). В противоположность катаболизму, анаболизм в ответе за рост и развитие мышц.

Схема обмена веществ в организме человека

Факторы человеческого организма, которые влияют на скорость обмена веществ:

Поэтому, приходится делать вывод, что переедание, потребление лишних калорий, комплексно разрушает организм.)

Скорость метаболизма влияет не только на то, как быстро вы сможете избавиться от лишнего веса, но и на работу всех внутренних органов, соответственно чем, медленней скорость обмена веществ, тем хуже организм будет снабжаться энергией.

Как вы уже поняли, скорость метаболизма у всех различна, зависит от многих факторов, но есть общая, универсальная формула, которая поможет вам определить, базовый обмен веществ (БОВ), об этом читайте ниже.

Как узнать скорость обмена веществ (метаболизма)

Что бы судить о своем обмене веществ (медленный он, или быстрый), надо всегда отталкиваться от правдоподобных фактов. Один из которых, это то, что у каждого человека, в зависимости от роста, веса, и возраста, есть универсальный, неизменный обмен веществ, то есть, организм будет тратить в состоянии покоя, без учета физической активности постоянное количество энергии, для поддержания своей жизнедеятельности, активности.

Итак, мы подошли, к тому, что базовый обмен веществ (БОВ), или базовая скорость метаболизма (БСМ), универсальная, которая зависит от роста, веса, и возраста. Ниже приведен универсальный расчет базового обмена веществ, в зависимости от пола.

Формула расчета базового обмена веществ

Полученная цифра, покажет вам, минимальное количество калорий, которые необходимо затрачивать для поддержания работоспособности организма, в состоянии покоя.

Для мужчин:

М: (66 + (13,7 * вес) + (5 * рост) – (6,8 * возраст)) * 1,2

Для женщин:

Ж: (655 + (9,6 * вес) + (1,8 * рост) – (4,7 * возраст))* 1,2

От полученной цифры, можно будет легко отталкиваться, когда вы будите считать, сколько вам необходимо тратить и потреблять ккал для того, чтобы похудеть, ускорить свой метаболизм.

Расход калорий в зависимости от фигуры девушки

Почему замедляется обмен веществ

Факторы, которые способствуют замедленному метаболизму. Избавьтесь от них в своей жизни, если думаете не только о фигуре, но и о своем здоровье.

Низкокалорийное питание, недостаток ккал

Очень часто, особенно девушки, ограничивают себя в питании, потребляя как можно меньше калорий в своем рационе питания, в результате чего, может нарушиться обмен веществ. Организм реагирует, на резкую нехватку калорий, как на стресс, в результате, обмен веществ замедляется, пища начинает откладываться на запас, в виде жира. То есть, голодовка, вам действительно, поможет, ваша масса будет уменьшаться, но не за счет уменьшения жиров, а за счёт разрушения ваших мышц, белков. Зато, потом, когда вы возобновите свой обычный рацион питания, вы не только наберёте всю прежнюю массу, но и наберете лишние кг жира, которые будут результатом вашего экстремального голодания. Теперь, вы понимаете, почему после не есть после 18-00, не только бесполезно, но и вредно.

Редкие приемы пищи

Очень часто, можно встретить такую картину, особенно в нынешнем ритме жизни: человек питается редко, но съедает за один раз много. Это очень вредно для желудка, такой рацион питания грозит не только различными заболеваниями жкт, но и жировыми отложениями. Большой перерыв между приемами пищи, замедляет обмен веществ, приводя его в состояние покоя, организм начинает медленно переваривать пищу, откладывая энергию в виде жира на запас.

Таким образом, лишний вес откладывается в жировом депо, при редких приемах пищи, постоянном чувстве голода, (природа предохраняет организм от недостатка калорий, уменьшая энергозатраты для своих нужд).

Отсутствие физических нагрузок (малоподвижный образ жизни)

Природа наделила человека руками, ногами, не для того, чтобы он целый день лежал на диване и смотрел телевизор, а для того, чтобы он работал, когда этого не происходит, начинают замедляться обменные процессы, атрофироваться мышцы по не надобности, то есть природа рассуждает так, раз человек этим не работает, значит, оно ему не нужно (тоже касается и нашего головного мозга, поэтому надо всегда находить себе умственное занятие, развиваться, чтобы не впасть в маразм). В результате, при минимальных затратах энергии, нулевой физической активности, происходит нарушение метаболизма.

Имейте в виду, что вероятность у людей с развитой мускулатурой по толстеть, при потреблении большого количества калорий минимальна, относительно человека, который никогда не занимался спортом, в связи, с тем, что мышцы, большие потребители калорий, для их жизнеобеспечения, поддержания, необходимо гораздо больше энергии, чем, для поддержания жира. Вот почему культуристы много едят, и не толстеют.

Неправильное питание и малоподвижный образ жизни

Недостаток витаминов и минералов

Наш организм, это сложная взаимосвязанная между собой структура органов, которые необходимо всегда питать, и насыщать полезными элементами (витаминами и минералами), когда этого не происходит, мы начинает заболевать, наша иммунная система угнетается, обмен веществ нарушается, в конечном итоге мы заболеваем.

Поэтому очень важно следить, за тем, чтобы в нашу пищеварительную систему поступали все важные нутриенты.

Нарушение водно-солевого баланса в организме

В нашем организме, происходят различные химические реакции, которые возможны благодаря входящей нас воде (60% от всего объема жидкости). Водно-солевой раствор это электролит, то есть жидкость, которая проводит электрические импульсы по нервным окончаниям, от мозга в мышцы. Таким образом, обезвоживание, нехватка солей, может привести к нарушению, замедлению обмена веществ.

Нехватка воды, ставит организм в стрессовое состояние, поэтому всегда пейте воду на тренировке.

Способы ускорения обмена веществ

Перечислим 4 основных способа, с помощью которых вы сможете ускорить свой обмен веществ, а значит и похудеть.

Займитесь спортом

Определитесь с целью, чего вы хотите от спорта. Если хотите нарастить мышечную массу, тогда вам необходимо идти в тренажерный зал, если хотите сбросить лишний вес, похудеть, тогда вам на беговую дорожку. А теперь по порядку, перечислим все плюсы, от наращивания мышечной массы, до похудения.

По своей природе все силовые тренировки анаэробные, это означает, что кислород не участвует в энергообеспечении. На практике, к анаэробному силовому тренингу относятся все упражнения связанные с гантелями, штангами, тренажерами, именно такие, упражнения, помогают наращивать мышечную массу.

Таким образом, нарастив мышцы, вы избавите себя от постоянной, изнурительной проблемы подсчета съеденных калорий, для того, чтобы не потолстеть.

Для поддержания мышц, требуется гораздо больше энергии, чем для поддержания жира, то есть, увеличив мышечную массу, вы ускорите, увеличите тем самым, свой метаболизм.

Аэробные тренировки (выработка энергии происходит с участием кислорода), в отличие от анаэробных тренировок, способствуют похуданию, сжиганию жира. В первую очередь к аэробному тренингу относят: бег, скалка, плавание, прыжки, лыжи, коньки и другие активные виды спорта. Такие тренировки всегда проходят на достаточном высоком пульсе, тренирую сердечно-сосудистую систему, и ускоряя обмен веществ. Кроме того, после аэробного тренинга, в зависимости от интенсивности, обмен веществ держится на высоком уровне еще 12-24 часов.

Спортивная девушка на беговой дорожке

Правильно питайтесь

Дробное питание (6-8 приемов пищи), богатое всеми необходимыми микроэлементами, белками, жирами и углеводами залог здорового пищеварения. Когда мы начинаем редко питаться, пропуская приемы пищи, наш организм начинает впадать в режим «голодания» замедляя обмен веществ, для сохранения энергии и уменьшения чувства голода.

Питаясь часто, но маленькими порциями вы увеличиваете скорость метаболизма, поэтому, если вы все еще питаетесь три раза в день, разбейте приему пищи на шесть (лучше пусть будет часто, но мало, чем редко, но по много).

Старайтесь употреблять в своем меню, продукты богатые клетчаткой, она позволяет ускорять обмен веществ, за счет, того, что она плохо усваивается, организму приходиться тратить на нее дополнительные затраты энергии.

Пейте воду

Недостаток воды в организме ведет к его обезвоживанию, в результате чего все физиологические, биохимические процессы в организме начинают страдать, температура тела падает незначительно, обмен веществ замедляется.

Выпивайте минимум 2-3 воды каждый день, желательно прохладной, так, как наш организм будет стремиться «нагреть» ее, тем самым затрачивать энергию, то есть будет ускоряться обмен веществ.

В зависимости от интенсивности тренировок, физической активности, объем выпиваемой воды должен корректироваться. Так, например, один профессиональный культурист, признался в интервью, что он выпивает вообще 7-8 литров воды в день.

Чистая минеральная вода

Восстанавливайте силы

Избегайте в первую очередь перетренированности, которая возникает, когда организм не успевает восстанавливать силы после тренировок. Чаще все перетренированность возникает, когда человек не досыпает и плохо питается. Спать надо минимум 8-10 часов, когда мы спим, вырабатывается гормон роста, который ответственен за развитие организма. Питание должно быть многоразовое, со всеми необходимыми нутриентами.

Переутомление ведет к замедлению обмена веществ, запускаются процессы экономии энергии, отложения жира.

И последнее, что хотелось бы сказать, так это про образ жизни современного человека. Несмотря, на все стрессы, которые нас окружают, люди начинают ходить в тренажерный зал, бегать, плавать, но все же, процент таких активных, здоровых людей, от всего человечества оставляет желать лучшего. Никогда не поздно, отказаться от вредных привычек, заняться спортом, начать правильно питаться, тем самым, вы не только улучшите свое самочувствие, ускорите обмен веществ, придадите тонус мышцам, но и дадите прекрасный пример, своим детям и окружающим, того, как надо жить, и наслаждаться жизнью.

Надеемся, что наши советы и рекомендации по ускорению обмена веществ в организме вам помогут, и вы в скором времени начнете худеть, и чувствовать себя лучше.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

pumpmuscles.ru


Смотрите также